Учение об иммунитете. Антигены

Антигенные свойства иммуноглобулинов послужили теми фенотипическими признаками, изучение которых позволило установить закономерности генетической регуляции биосинтеза иммуноглобулинов. Любая молекула иммуноглобулина обладает, по-видимому, той или иной антительной специфичностью, т. е. способна взаимодействовать с чужеродными для данного организма веществами - антигенами. Однако и сама молекула иммуноглобулина способна выступать в роли антигена в тех случаях, когда иммуноглобулины одного вида (например, человека) вводятся особям другого вида (например, кролика).

Различают три типа антигенных детерминант молекул иммуноглобулина: изотипы, аллотипы, идиотипы. Изотипическими антигенными детерминантами являются те участки молекул иммуноглобулинов, антигенные свойства которых идентичны у всех особей данного вида.

Каждый класс иммуноглобулинов имеет свои, характерные только для данного класса, изотипические антигены, которые локализованы на постоянной области тяжелых цепей. Изотипические детерминанты, характерные для легких цепей каппа- и ламбда-типа, также локализованы на постоянной области цепи. Разные классы иммуноглобулинов и разные типы легких цепей не имеют общих антигенных детерминант, несмотря на наличие гомологичных последовательностей.
Однако подклассы иммуноглобулинов имеют как общие для разных подклассов антигенные детерминанты, так и детерминанты, специфичные только для данного подкласса.

К аллотипическим антигенным детерминантам (аллотипам) относятся те антигенные детерминанты молекул иммуноглобулинов, которые имеются у одних особей данного вида и отсутствуют у других, и эти различия определяются аллельными генами. Наличие аллотипов является отражением внутривидового полиморфизма в антигенном строении молекул иммуноглобулинов.

И, наконец, третий тип антигенных детерминант - это идиотипические детерминанты (идиотипы). К идиотипам относятся те индивидуальные антигенные свойства, которые присущи только молекулам антител данной специфичности или индивидуальным миеломным иммуноглобулинам. Антигенная специфичность идиотипов зависит от строения вариабельной области молекулы антитела, и в ряде случаев имеются определенные доказательства, что идиотипы являются отражением антигенных свойств активного центра молекулы антитела.

Антитела к изотипическим детерминантам используются для идентификации различных классов и подклассов иммуноглобулинов и типов легких цепей. Антитела же к аллотипам служат для обнаружения генетических вариантов иммуноглобулинов, причем аллотипические маркеры локализованы, как правило, на постоянной части полипептидных цепей иммуноглобулинов. Что же касается идиотипических детерминант, то их локализация на вариабельной части молекулы иммуноглобулина позволяет их использовать в качестве генетических маркеров вариабельной части.

История обнаружения генетических маркеров полипептидных цепей иммуноглобулинов вкратце такова. Уже давно было известно, что в сыворотке больных ревматоидным артритом часто содержатся так называемые агглютинаторы, которые способны специфически взаимодействовать с аутологичным IgG. Для обнаружения агглютинаторов используются эритроциты людей Rh+, покрытые неполными aHTH-Rh-антителами, т. е. антителами, которые неспособны агглютинировать эритроциты. Агглютинация наступает только после добавления агглютинатора, способного взаимодействовать с анти-Rh-антителами на поверхности эритроцитов.

Еще в 30-х годах было показано, что молекула белка может связать несколько молекул антител одновременно.

В 50-х годах стало ясно, что антитела взаимодействуют с дискретнимы участками на поверхности белковой молекулы. Их назвали антигенными детерминантами. Были сформулированы проблему: что составляет антигенную детерминанту? Какие свойства позволяют той или иной области белка быть распознан как чужеродные и вызвать иммунный ответ?

Сначала, как модель, были использованы короткие синтетические пептиды. Оказалось, что линейные гомополимеры аминокислот (типа (Ala-Ala) n) неимуногенни, но после конъюгации с белком-носителем ведут себя как гаптены, т.е. имеют антигенную специфичность. Розгилковани гетерополимеры аминокислот высокоиммуногенной и вызывают синтез антител к поверхностным участков молекулы. Пептиды, взятые в упорядоченной или денатурированный форме, имели различную антигенную специфичность. Если синтетический антиген нос заряженные группы, то антитела к нему имели противоположный заряд.
Было сделано выводов, что антигенные детерминанты находятся на поверхности молекулы, имеющие определенную конформацию и несут аминокислотные остатки, способные образовывать Нековалентные связи с антителом.

Главные работы по антигенной структуре глобулярных белков было проведено в 70-80-е годы ХХ века. В результате их было выяснено, что антигенная детерминанта эпитоп - это обособленная область на поверхности белковой молекулы. В состав ее входят 6-7 аминокислотных остатков. Не было найдено связи с каким-то определенными аминокислотными остатками: в состав антигенных детерминант входили те аминокислоты, которые обычно расположены на поверхности белка. Оказалось, что каждая антигенная детерминанта описывает на поверхности белка линию длиной 23-25? и имеет детерминированы N и C конце.
Различают последовательные (линейные) и прерывистые (конформационные) антигенные детерминанты.
Последовательные - определяются порядком аминокислот. Антитела к таким эпитопов легко взаимодействуют с линейным пептидом такой же последовательности. В чистом виде встречаются в фибриллярных белков и пептидов. В глобулярных белков поверхностные последовательные участки имеют определенную конформацию. Антитела, полученные до пептидов, часто узнают нативные белки, т.е. могут определенным образом приспосабливаться к конформации поверхностных фрагментов.

Прерывистые антигенные детерминанты состоят из аминокислотных остатков, расположенных далеко друг от друга в полипептидной цепи, но сближенных за счет третичной структуры белка, прежде всего дисульфидных связей. Такие антигенные детерминанты нельзя смоделировать линейным пептидом.

Не все аминокислоты, входящие в состав эпитопов, имеют одинаковое значение для распознавания: как правило, специфичность определяется 1-2 остатками (имунодоминантнимы), а другие играют роль в поддержании должного конформации эпитопов.
Как примеры, рассмотрим антигенную структура миоглобина кашалота и лизоцима куриного яйца - первых детально изученных белковых антигенов.
Миоглобин - гемовмисний белок мышц с молекулярной массой 18 кДа, состоящий из 153 аминокислотных остатков, не содержит дисульфидных связей. В молекуле миоглобина были определены пять линейных эпитопов: фрагменты 16-21, 56-62, 94-99, 113-119 и 146-151. В их состав входили гидрофильные полярные аминокислоты.: Lys, Arg, Glu, His.

Лизоцим - фермент, содержащийся в секреторных жидкостях организма млекопитающих и в белке птичьих яиц, с молекулярной массой 14 кДа, имеет четыре дисульфидные связи. В составе лизоцима были определены три прерывистые антигенные детерминанты, которые соответствовали фрагментам:
22-34 и 113-116, сближенных дисульфидных связей 30-115;
62-68 и 74-96, сближенных связями 76-94 и 64-80;
6-13 и 126-129, сближенных связи 6-127.
Для изучения этих антигенных детерминант было предложено специальный экспериментальный подход - синтез, имитирующий поверхность. Так, для имитации прерывистого эпитопы остатки был идентифицирован как имунодоминантни, сшивали в единое пептид, сочетая отдельные фрагменты с помощью глициновыми спейсора:
116 113 114 34 33
Lys Asn Arg Phe Lys
Lys-Asn-Arg-Gly-Phe-Lys
Такой пептид эффективно блокировал связывание специфических антител с белком, т.е. был похож на естественный прерывистый эпитоп.
В 80-е годы стало ясно, что вся поверхность белка может быть антигенной, т.е. если для иммунизации использовать синтетические пептиды, то можно получить антитела к любой поверхностью участка. Однако при иммунизации целым белком антитела образовывались только к определенным участкам. Использование моноклональных антител четко определенной специфичности показало, что каждый антигенная детерминанта фактически состоит из нескольких потенциально антигенных участков перекрываются. Теперь такие эпитопы стали называть более удачным термином имунодоминантни области.
Естественно, встал вопрос, какие факторы определяют имунодоминантнисть.
Исходя из признанной функции иммунной системы отличать "свое" от "чужого", первым принципом, положенным в основу имунодоминантности, был принцип чужеродности антигена по отношению к белкам реципиента. Чтобы выяснить справедливость этого принципа изучали серии гомологичных белков, т.е. белков, которые встречаются во многих организмов и отличаются отдельными аминокислотными заменами. Идеальными для таких экспериментов оказались цитохромы с.
Цитохромы с - это гемовмисни белки дыхательной цепи митохондрий с молекулярной массой 13 кДа, состоящие из около 100 аминокислотных остатков. Они появились очень рано в эволюции живого мира, первые цитохромы с встречаются у бактерий. Структура белка оказалась настолько удачной, что сохранилась в принципе к высших животных. Цитохромы млекопитающих отличаются между собой отдельными аминокислотными остатками, т.е. могут быть рассмотрены как точечные мутанты. Было обнаружено прямой связи между иммуногенностью цитохрома с и количеством остатков, которые отличали антиген от гомологического цитохрома с реципиента. Но относительно специфичности антител, которые производились, эта связь не оказался абсолютным. Так, кролики, иммунизированных собственным цитохромом, модифицированным глютаровый альдегид,
14
вырабатывали антитела против эпитопов собственного цитохрома. Когда животных разных видов иммунизировали одним типом цитохрома, то антитела вырабатывались против одних и тех же участков. Тогда стали рассматривать другой принцип имунодоминантности - связь со структурными особенностями антигена: доступностью, зарядом, специфическим расположением на сгибе подипептидного цепи. Было предложено алгоритмы поиска имунодоминантних участков по принципам гидрофильности и атомной подвижности. Дальнейшие эксперименты выявили связь гидрофильности и подвижности с эволюционной вариабильнисть: аминокислотные замены, которые закрепились в эволюции, не должны нарушать биологические функции цитохрома с и поэтому локализовались у поверхностных, наиболее гибких участках, где появление другой аминокислоты наиболее безопасна и может быть компенсирована за счет гибкости молекулы.
В результате этих исследований было дийдено выводу, что хотя вся поверхность белка в принципе может быть антигенной, при естественной иммунизации нативным белком антитела образуются только к определенным эпитопов, имунодоминантнисть которых определяется их структурными особенностями, прежде всего, гидрофильностью и атомной подвижности (гибкости).
Антитела (и В лимфоциты) связывают нативный антиген и узнают на его поверхности так называемые В-эпитопы. Но в процессе иммунного ответа антиген узнаваем и Т лимфоцитами. Более того, именно специфичность Т лимфоцитов определяет те имунодоминантни участка будет опознан как В-эпитопы. Участки антигена, которые распознаются Т лимфоцитами, называются Т-эпитопами. Их положение и структура определяются не так легко, как для В эпитопов, потому что Т клетки узнают антигены совсем по-другому.
1. Для распознавания Т лимфоцитами антиген должен быть процесованим (расщепленным). Процессинг происходит внутри специализированных клеток под действием протеолитических ферментов. Спектр пептидов, образующихся зависит от типа протеаз, которые отличаются у разных типов клеток.
2. Процесований пептид должен быть представленным в комплексе с белками главного комплекса гистосовместимости: отбор антигенного пептида зависит от структуры этих белков, которые являются высоко полиморфными и отличаются даже в разных личностей одного вида.

3. Распознавание представленного пептида зависит от репертуара Т-клеточных рецепторов, который является результатом положительного и отрицательного отбора в определенного индивида.
В результате, Т-эпитоп - это не обязательно поверхностная структура; не конформационно-зависимый, а линейный пептид. Его положение не связано с гидрофильностью или подвижностью полипептидной цепи. Оно зависит как от структуры нативного белка (потенциальные сайты протеолиза, пептидные мотивы, соответствующие сайтам связывания белков гистосовместимости), так и от состояния иммунной системы индивидуального реципиента (репертуар белков гистосовместимости и Т-клеточных рецепторов). Т-эпитопы больше связаны с сайтами чужеродности антигена по отношению к белкам реципиента, чем В-эпитопы, поскольку репертуар Т-рецепторов проходит более строгий отрицательный отбор.
Определение строения и локализации В и Т эпитопов представляет не только фундаментальный интерес. Оно необходимо для создания эффективных вакцин и имунодиагностикумив.

Иммунная система способна узнать почти любое вещество из среды, окружающей макроорганизм. Для этого антиген должен быть надлежащим образом представлен иммунным клеткам. В лимфоциты и антитела узнают конформационно-зависимые поверхностные эпитопы, расположенные в местах наибольшей гидрофильности и гибкости полипептидной цепи. Т лимфоциты узнают внутренние линейные пептидные фрагменты, которые образуются в результате протеолиза (процессинга) нативного антигена.

СИСТЕМА ИММУНОБИОЛОГИЧЕСКОГО НАДЗОРА

Биологическое значение системы иммунобиологического надзора ИБН заключается в контроле (надзоре) за индивидуальным и однородным клеточно-молекулярным составом организма.

Обнаружение носителя чужеродной генетической или антигенной информации (молекулы, вирусы, клетки или их фрагменты) сопровождается его инактивацией, деструкцией и, как правило, элиминацией. При этом клетки иммунной системы способны сохранять «память» о данном агенте.

Повторный контакт такого агента с клетками системы ИБН вызывает развитие эффективного ответа, который формируется при участии как специфических - иммунных механизмов защиты, так и неспецифических факторов резистентности организма (рис. 1).

Рис. 1. Структура системы иммунобиологического надзора организма . NK - natural killers (естественные киллеры). А-клетки - антигенпредставляющие клетки.

К числу основных в системе представлений о механизмах надзора за индивидуальным и однородным антигенном составе организма относят понятия об Аг, иммунитете, иммунной системе и системе факторов неспецифической защиты организма.

Антигены

Инициальным звеном процесса формирования иммунного ответа является распознавание чужеродного агента - антигена (Аг). Происхождение этого термина связано с периодом поиска агентов, веществ или «тел», обезвреживающих факторы, вызывающие болезнь, а конкретно речь шла о токсине дифтерийной палочки. Эти вещества назвали вначале «антитоксинами», а вскоре был введён более общий термин «антитело». Фактор же, приводящий к образованию «антитела» обозначили как «антиген».

Антиген - вещество экзо- или эндогенного происхождения, вызывающее развитие иммунных реакций (гуморального и клеточного иммунных ответов, реакций гиперчувствительности замедленного типа и формирование иммунологической памяти).

Учитывая способность Аг вызывать толерантность, иммунный или аллергический ответ их называют ещё, соответственно, толерогенами, иммуногенами или аллергенами соответственно.

Различный результат взаимодействия Аг и организма (иммунитет, аллергия, толерантность) зависит от ряда факторов: от свойств самого Аг, условий его взаимодействия с иммунной системой, состояния реактивности организма и других (рис. 2).

Рис. 2. Потенциальные эффекты антигена в организме.

Антигенная детерминанта

Образование АТ и сенсибилизацию лимфоцитов вызывает не вся молекула Аг, а только особая его часть - антигенная детерминанта, или эпитоп. У большинства белковых Аг такую детерминанту образует последовательность из 4–8 аминокислотных остатков, а у полисахаридных Аг - 3–6 гексозных остатков. Число же детерминант у одного Аг может быть различным. Так, у яичного альбумина их не менее 5, у дифтерийного токсина - минимум 80, у тиреоглобулина - более 40.



Виды антигенов

В соответствии со структурой и происхождением Аг подразделяют на несколько видов.

В зависимости от структуры различают белковые и небелковые Аг.

1). Белки или сложные вещества (гликопротеины, нуклеопротеины, ЛП). Их молекулы могут иметь несколько различных антигенных детерминант;

2). Вещества, не содержащие белка, называют гаптенами. К ним относятся многие моно-, олиго- и полисахариды, липиды, гликолипиды, искусственные полимеры, неорганические вещества (соединения йода, брома, висмута), некоторые ЛС. Сами по себе гаптены неиммуногенны. Однако после их присоединения (как правило, ковалентного) к носителю - молекуле белка или белковым лигандам клеточных мембран - они приобретают способность вызывать иммунный ответ. Молекула гаптена обычно содержит лишь одну антигенную детерминанту.

В зависимости от происхождения различают экзогенные и эндогенные Аг.

1. Экзогенные Аг подразделяют на инфекционные и неинфекционные.

б) Неинфекционные (чужеродные белки; белоксодержащие соединения; Аг и гаптены в составе пыли, пищевых продуктов, пыльцы растений, ряда ЛС).

2. Эндогенные Аг (аутоантигены) появляются при повреждении белков и содержащих белок молекул собственных клеток, неклеточных структур и жидкостей организма, при конъюгации с ними гаптенов, в результате мутаций, приводящих к синтезу аномальных белков, при сбоях иммунной системы. Другими словами, во всех случаях когда Аг распознаётся как чужеродный.

Иммунитет

В иммунологии термин «иммунитет» применяют в трёх значениях.

2. Для обозначения реакций системы ИБН против Аг.

3. Для обозначения физиологической формы иммуногенной реактивности организма, наблюдающейся при контакте клеток иммунной системы с генетически или антигенно чужеродной структурой. В результате эта структура подвергается деструкции и, как правило, элиминируется из организма.

Иммунная система

Иммунная система - комплекс органов и тканей, содержащих иммунокомпетентные клетки и обеспечивающая антигенную индивидуальность и однородность организма путём обнаружения и, как правило, деструкции и элиминации из него чужеродного Аг. Иммунная система состоит из центральных и периферических органов.

К центральным (первичным) органам относят костный мозг и вилочковую железу. В них происходит антигеннезависимое деление и созревание лимфоцитов, которые впоследствии мигрируют в периферические органы иммунной системы.

К периферическим (вторичным) органам относят селезёнку, лимфатические узлы, миндалины, лимфоидные элементы ряда слизистых оболочек. В этих органах происходят как антигеннезависимая, так и антигензависимая пролиферация и дифференцировка лимфоцитов. Как правило, зрелые лимфоциты впервые контактируют с Аг именно в периферических лимфоидных органах.

Заселение периферических органов иммунной системы T- и B-лимфоцитами, поступающими из центральных органов иммунной системы, происходит не хаотически. Каждая популяция лимфоцитов мигрирует из кровеносных сосудов в определённые лимфоидные органы и даже в различные их регионы. Так, B-лимфоциты преобладают в селезёнке (в её красной пульпе, а также по периферии белой) и пейеровой бляшке кишечника (в центрах фолликулов), а T-лимфоциты - в лимфатических узлах (в глубоких слоях их коркового вещества и в перифолликулярном пространстве).

В организме здорового человека в процессе лимфопоэза образуется более 10 9 разновидностей однородных клонов лимфоцитов. При этом каждый клон экспрессирует только один вид специфического антигенсвязывающего рецептора. Большинство лимфоцитов периферических органов иммунной системы не закрепляются в них навсегда. Они постоянно циркулируют с кровью и лимфой как между различными лимфоидными органами, так и во всех других органах и тканях организма. Такие лимфоциты получили название рециркулирующих.

† Биологический смысл рециркуляции T- и B-лимфоцитов:

Во-первых, осуществление постоянного надзора за антигенными структурами организма.

Во-вторых, реализация межклеточных взаимодействий (кооперация) лимфоцитов и мононуклеарных фагоцитов, что необходимо для развития и регуляции иммунных реакций.

Определенная часть антигена или гаптена, которая реагирует с иммунной системой названа антигенной детерминантой или эпитопом. Обычно это маленькая часть молекулы и часто состоит только из нескольких (от четырех до восьми) аминокислот или сахарных остатков. Одна антигенная молекула может нести несколько различных эпитопов, каждый с характерной, жестко фиксированной, конфигурацией, которая определяется первичной, вторичной или третичной структурой молекулы. Эти различные антигенные детерминанты распознаются раздельно иммунной системой, и антитела, которые синтезируются, взаимодействуют только с единственным эпитопом (то есть, они обладают специфичностью).

Типы антигенов

A. Внешние антигены: антигены могут быть внешние, то есть, попадать в организм извне; они включают микроорганизмы, трансплантированные клетки и чужеродные частицы, которые могут попадать в организм алиментарным, ингаляционным или парентеральным путем.

Б. Внутренние антигены: внутренние антигены возникают из поврежденных молекул организма (например, при соединении их с гаптеном, при частичной денатурации собственных молекул или при трансформации клеток в процессе возникновения опухоли), которые распознаются как “чужие”.

В. Скрытые антигены: определенные антигены (например, нервная ткань, белки хрусталика и сперматозоиды) анатомически отделены от иммунной системы гисто-гематическими барьерами еще на ранних этапах эмбриогенеза, следовательно, толерантность к этим молекулам не возникает и их попадание в кровоток в постнатальном периоде может приводить к иммунному ответу. Иммунологическая реактивность против измененных или скрытых собственных антигенов возникает при некоторых аутоиммунных заболеваниях.

Распознавание антигенов

Чтобы развился иммунный ответ, внешние антигены сначала должны распознаться иммунной системой. Механизмы распознавания недостаточно изучены, они зависят от характера (типа) антигена, пути проникновения его в организм и т.д. Оптимальный иммунный ответ на наибольшее количество антигенов возникает только после взаимодействия антигена с макрофагами, T- и B-лимфоцитами (рис. 10.1). Макрофаг при этом играет роль клетки, «обрабатывающей» антиген. Дендритические ретикулярные клетки в лимфоидных фолликулах и интердигитирующие ретикулярные клетки в паракортикальной зоне лимфатических узлов, как предполагается, также являются специализированными макрофагами, приспособленными для “обработки” антигенов для B- и T-клеток соответственно (см. ниже).

«Обработка» заключается в том, что поглощенный макрофагом антиген вновь выводится на его поверхность в комплексе с молекулой MHC (Major Histocompatibility Complex - главного комплекса гистосовместимости).


Рецепторы для антигенов на T-клетках распознают комбинацию “антиген-молекула МНС” на макрофаге, что приводит к активации Т-клетки и высвобождению различных лимфокинов (табл. 10.3). T-хелперы распознают антиген в комплексе с молекулой MHC II класса, а T-супрессоры - с молекулой MHC I класса. Типичная форма активации В-клетки (T-клеточнозависимая) включает в себя взаимодействие ее и с макрофагами, и с T-клетками. B-клетки распознают некоторые поливалентные антигены непосредственно (T-клеточнонезависимые антигены).

КЛЕТОЧНАЯ ОСНОВА ИММУННОГО ОТВЕТА

Лимфоидная система

Иммунный ответ осуществляется лимфоидной системой организма, которая делится на центральные и периферические органы иммуногенеза.

Центральные органы иммуногенеза

К центральным органам иммуногенеза относятся тимус и костный мозг, в которых во внутриутробном периоде возникают первоначальные, полустволовые лимфоидные клетки (в этот период возникают разнообразие и толерантность). Считается, что у человека окончательное развитие разнообразия и толерантности завершатся в пределах нескольких месяцев после рождения).

Периферические органы иммуногенеза

К периферическим органам иммуногенеза относятся лимфатические узлы, селезенка, кольцо Пирогова-Вальдейера (миндалины глотки) и лимфатические фолликулы в стенках кишечника, в которых скапливаются зрелые лимфоциты, отвечающие на антигенную стимуляцию.

Периферическая кровь также содержит лимфоциты. Циркулирующие лимфоциты составляют пул клеток, которые непрерывно обмениваются с клетками периферической лимфоидной ткани.

ЛИМФОЦИТЫ

Лимфоциты образуются в эмбриональном периоде из лимфоидного ростка в костном мозге. Лимфоциты можно классифицировать на основе места их развития: 1) T-лимфоциты (тимус-зависимые) развиваются в тимусе и 2) B-лимфоциты, которые развиваются вне тимуса. B-лимфоциты развиваются у птиц в сумке Фабрициуса (bursa - сумка, отсюда термин «B-клетки»); функциональный эквивалент у человека - эмбриональная печень или костный мозг.

Неактивные малые лимфоциты - клетки приблизительно 8-10 мкм в диаметре, с малым объемом цитоплазмы и сферическим ядром, занимающим почти всю клетку. Ядро содержит конденсированный хроматин, который выглядит выражено базофильным при обычной окраске препаратов. Все неактивные популяции лимфоцитов сходны друг с другом морфологически и могут дифференциро­ваться только иммунологическими и имму­номорфологическими методами (табл. 10.1).

T-лимфоциты (T-клетки)

A. Распределение T-клеток в организме: T-лимфоциты возникают в эмбриональном тимусе. В постэмбриональном периоде после созревания T-лимфоциты расселяются в T-зонах периферической лимфоидной ткани. К этим зонам относятся:

Паракортикальная зона лимфатических узлов и пространство между лимфоидными фолликулами (70% лимфоцитов в лимфатических узлах - T-лимфоциты);

Периартериальные зоны лимфоидных фолликулов в белой пульпе селезенки (40% селезеночных лимфоцитов - T-клетки).

T-лимфоциты непрерывно и активно циркулируют между периферической кровью и периферической лимфоидной тканью. От 80 до 90 процентов периферических лимфоцитов крови - T-клетки.

Б. Трансформация T-клеток: После стимуляции (активации) определенным антигеном, T-лимфоциты преобразовываются в большие, активно делящиеся клетки, названные трансформированными T-лимфоцитами, или T-иммунобластами, из которых затем возникает исполнительное звено T-клеток. T-иммунобласты имеют размеры 15-20 мкм в диаметре, с большим объемом цитоплазмы и неправильным ядром со светлым хроматином и ядрышком; ядро располагается в центре клетки. T-иммунобласты можно отличить от B-иммунобластов только иммуноморфологическими методами. Эффекторные T-лимфоциты морфологически сходны с неактивными малыми лимфоцитами и часто называются сенсибилизированными, цитотоксическими клетками или T-киллерами.

Этот процесс преобразования Т-клеток составляет стадию развития (усиления) иммунного ответа (рис. 10.1), в течение которой несколько T-клеток, несущих рецепторы, которые распознают данный специфический антиген, формируют многочисленный клон T-клеток исполнительного звена, активных против того же самого антигена, потому что они имеют соответствующий рецептор. Полный процесс активации Т-клетки начинается тогда, когда макрофаги перехватывают антиген и с помощью определенного механизма, который еще не достаточно изучен, «обрабатывают» антиген и повторно выводят его на поверхность клетки в соединении с MHC-молекулами перед взаимодействием с T-клеткой. Распознавание происходит только тогда, когда T-клетка несет специфичный рецептор, способный распознавать комплекс «антиген - МНС-молекула».

В. Функции эффекторных T-клеток: эффекторные Т-клетки играют важную роль в трех функциях иммунной системы:

Клеточном иммунитете;

Регулировании активности В-клеток;

Гиперчувствительности замедленного (IV) типа.

1. Клеточный иммунитет: включает два главных аспекта:

- цитотоксичные клетки, несущие поверхностные антигены, вызывают прямое поражение клеток (цитотоксические или клетки-киллеры). Прямая цитотоксичность наблюдается при иммунологическом ответе на антигены на поверхности неопластических клеток, пересаженных тканей и инфицированных вирусом клеток. Цитотоксические T-клетки, возможно, вызывают лизис путем образования пор в цитоплазматических мембранах антигенположительных клеток.

- выработка лимфокинов:исполнительные T-клетки играют решающую роль в формировании иммунного ответа путем образования растворимых белков (лимфокинов), которые регулируют функции определенных клеток, например, макрофагов и других лимфоцитов (табл. 10.3).

2. Регулирование активности B-лимфоцитов: два важных подтипа T-лимфоцитов принимают участие в регулировании функции B-лимфоцитов.

Хелперные T-клетки(CD4 антиген-положительные) помогают в активации и трансформации B-лимфоцитов и в синтезе иммуноглобулинов. Супрессорные T-клетки (CD8 антиген-положительные) ингибируют активацию В-клеток и регулируют синтез иммуноглобулинов. Хелперные и супрессорные T-клетки также оказывают подобные регулирующие влияния и на клеточный иммунитет. Однако, подтип CD4-положительных «хелперных» клеток может оказывать чисто супрессорное влияние, стимулируя CD8-положительные супрессорные клетки. Нормальное отношение хелперных T-лимфоцитов к супрессорным T-лимфоцитам (отношение CD4/CD8) в периферической крови составляет 0.9-2.7, с небольшими отклонениями в очень молодом и очень старом возрасте. Это отношение может быть сильно снижено при определенных болезнях, включая иммунодефицитные состояния, гиперчувствительность IV (замедленного типа) и ВИЧ-инфекцию.

Г. Морфологическая идентификация субпопуляций Т-лимфоцитов: Т-лимфоциты и их подтипы морфологически не отличаются друг от друга или от B-лимфоцитов и характеризуются присутствием антигенов, которые действуют как иммунологические маркеры. Эти антигены могут быть обнаружены специфическими моноклональными антителами (табл. 10.1). Использование этих антител при иммунофлюоресцентном или иммунопероксидазном методе также позволяет выяснить локализацию различных T-субпопуляций лимфоцитов в лимфоидной ткани. Генетические методы, обнаруживающие перестройку рецепторных генов Т-клетки, также помогают в идентификации T-клеток. Другие методы, типа теста Е-розеткообразования, устаревают.

B-лимфоциты

A. Распределение В-клеток в организме: B-лимфоциты развиваются в функциональном эквиваленте сумки Фабрициуса птиц (вероятно, в эмбриональном костном мозге у млекопитающих), проходя при этом сложный процесс, включающий в себя размножение и разделение на классы. Затем B-лимфоциты распространяются током крови в B-области периферической лимфоидной ткани. К этим областям относятся: 1) реактивные (вторичные или герминативные) центры фолликулов и синусы мозгового слоя лимфатических узлов (30% лимфоцитов в лимфатических узлах - B-клетки); 2) реактивные центры в фолликулах белой пульпы селезенки (40% селезеночных лимфоцитов - B-клетки). Термин «первичный фолликул» используется для обозначения скопления B-клеток в лимфатических узлах или селезенке, которые не проявляют пролиферативной активности. Подобно T-клеткам, B-клетки также постоянно циркулируют между лимфоидной тканью и периферической кровью, однако менее активно. В-клетки составляют 10-20% процентов от общего числа лимфоцитов периферической крови.

Б. Трансформация В-клеток: после стимуляции специфическим антигеном B-лимфоциты трансформируются в плазматические клетки. Этот процесс идет стадийно, с образованием ряда промежуточных форм, формирующих реактивный (герминативный) центр фолликула. Плазматические клетки синтезируют иммуноглобулины (антитела), которые являются специфичными для антигена. Образование циркулирующих антител, специфичных для антигенов - основа приобретенного иммунитета, названного гуморальным иммунитетом.

В. Морфологическая идентификация B-клеток: плазматические клетки являются эффекторными (исполнительными) B-клетками. Плазмоциты имеют характерное морфологическое строение (табл. 10.2). Плазмоциты имеют размеры 12-15 мкм в диаметре, базофильную цитоплазму (базофилия объясняется присутствием большого количества РНК, требуемой для синтеза иммуноглобулинов), в которой обнаруживается зона Гольджи, видимая как бледная область, расположенная рядом с ядром, расположенным эксцентрично; хроматин в ядре расположен в виде крупных глыбок по периферии (в виде «колеса телеги» или «циферблата»). Иммуноглобулины могут выявляться в цитоплазме иммунологическими методами.

Другие B-лимфоциты могут быть идентифицированы только иммунологическими, иммуноморфологическими и генетическими методами. Иммунофлюоресцентный или иммунопероксидазный методы, использующие антитела к человеческому иммуноглобулину, обнаруживают присутствие поверхностного иммуноглобулина (на созревающих B-клетках) и цитоплазматического иммуноглобулина (в плазматических клетках). Также используются специфические моноклональные антитела, которые реагируют с B-клетками (табл. 10.1). Генетические методы, которые обнаруживают присутствие перестроенных генов иммуноглобулинов, могут также помочь идентифицировать B-лимфоциты.

«Нулевые» клетки (NK-клетки и K-клетки)

«Нулевые» клетки - это гетерогенная группа лимфоцитов, не обладающих способностью формировать E-розетки (иммунологический тест, которые раньше использовался для идентификации T-лимфоцитов) и не несущие поверхностного иммуноглобулина (следовательно, немаркированные или «нулевые» клетки). Эта группа включает некоторые клетки, которые являются явно T- или B-клетками, что было недавно доказано генетическими методами и методом моноклональных антител, однако обозначение этих клеток было оставлено. Популяция “нулевых” клеток представляет собой Т- и В-клетки, находящиеся на ранних этапах дифференцировки, до появления большого количества маркеров на их поверхности. «Нулевые» клетки составляют 5-10% от всех лимфоцитов периферической крови.

Некоторые «нулевые» клетки обладают цитотоксической активностью и названы естественными киллерами (NK-клетками); они могут разрушать некоторые чужеродные клетки, даже если организм никогда не встречался с данным антигеном. Другие (названные K-клетками) участвуют в разрушении клеток с помощью антител (антителозависимая клеточная цитотоксичность (ADCC - antibody-dependent cell-mediated cyto­toxicity)).

Имеются доказательства, что активность, которую проявляют NK-клетки и K-клетки,- это 2 различных функции одного типа клеток. NK клетки могут играть защитную роль при опухолевом процессе, устраняя потенциально неопластические клетки.

МАКРОФАГИ (моноциты крови и гистиоциты тканей)

А. Распределение в организме: макрофаги отличаются от лимфоцитов, но также играют важную роль в иммунном ответе, и как антиген-обрабатывающие клетки при возникновении ответа, и как фагоциты в виде исполнительного звена. В крови они названы моноцитами; в тканях - гистиоцитами или тканевыми макрофагами. Исследование гемопоэза в костном мозге животных и человека установило, что все макрофаги возникают из предшественников моноцитов в костном мозге. Макрофаги найдены во всех тканях организма (гистиоциты), а также в лимфатических узлах, где они располагаются как диффузно, так и фиксировано в субкапсулярном пространстве и в синусах мозгового слоя. Тканевые макрофаги также обнаруживаются в синусах красной пульпы селезенки. В печени макрофаги известны как клетки Купфера, в легких - как альвеолярные макрофаги, а в мозговой ткани - как микроглия. В периферической крови и костном мозге они выявляются в виде моноцитов и их предшественников. Дендрити­ческие ретикулярные клетки в фолликулах лимфатических узлов и интердигитирующие ретикулярные клетки в паракортикальной зоне - специализированные клетки «обработки» антигенов для B- и T-лимфоцитов соответственно. Хотя их происхождение не установлено, предполагается, что они относятся к макрофагам. В более старой литературе для обозначения этих типов клеток использовался термин «ретикулоэндотелиальная система».

Б. Идентификация макрофагов : макрофаги содержат многочисленные цитоплазматические ферменты и могут быть идентифицированы в тканях гистохимическими методами, которые обнаруживают эти ферменты. Некоторые ферменты, типа мурамидазы (лизоцима) и химотрипсина, могут обнаруживаться методом меченных антител (иммуногистохимия), при котором используются антитела против белков фермента. Такие моноклональные антитела против различных CD антигенов широко используются для идентифицикации макрофагов (табл. 10.1; CD11, CD68).

В. Функции макрофагов : функции макрофагов включают в себя фагоцитоз, «обработку» антигенов и взаимодействие с цитокинами.

1. Фагоцитоз:

Неиммунный фагоцитоз: макрофаги способны фагоцитировать чужеродные частицы, микроорганизмы и остатки поврежденных клеток непосредственно, без вызова иммунного ответа. Однако фагоцитоз микроорганизмов и их уничтожение значительно облегчаются при присутствии специфических иммуноглобулинов, комплемента и лимфокинов, которые производятся иммунологически активированными T-лимфоцитами (табл. 10.3).

Иммунный фагоцитоз: макрофаги имеют поверхностные рецепторы для C3b и Fc-фрагмента иммуноглобулинов. Любые частицы, которые покрыты иммуноглобулином или комплементом (опсонизированы), фагоцитируются значительно легче, чем «голые» частицы.

2. «Обработка» антигенов: макрофаги «обрабатывают» антигены и представляют их B- и T-лимфоцитам в необходимой форме (рис. 10.1); это клеточное взаимодействие включает одновременное распознавание лимфоцитами MHC молекул и «обработанных антигенов», находящихся на поверхности макрофагов.

3. Взаимодействие с цитокинами: макрофаги взаимодействуют с цитокинами, производимыми T-лимфоцитами (табл. 10.3) для защиты организма против определенных повреждающих агентов. Типичный результат такого взаимодействия - формирование гранулем. Макрофаги также производят цитокины, включая интерлейкин-l, b-интерферон и факторы роста T- и B-клеток (табл. 10.3). Различные взаимодействия лимфоцитов и макрофагов в тканях проявляются морфологически при хроническом воспалении.

ИММУНОГЛОБУЛИНЫ (антитела)

Синтез иммуноглобулинов: иммуноглобулины синтезируются плазматическими клетками, которые образуются из трансформированных, стимулированных антигеном B-лимфоцитов (B-иммунобластов). Все молекулы иммуноглобулинов, синтезированных отдельной плазматической клеткой, идентичны и имеют специфическую реактивность против единственной антигенной детерминанты. Аналогично, все плазматические клетки, полученные путем трансформации и пролиферации одного B-лимфоцита-предщественника, идентичны; то есть, они составляют клон. Молекулы иммуноглобулинов, синтезированные клетками различных клонов плазматических клеток, имеют различные последовательности аминокислот, что обусловливает различную третичную структуру молекул и придает иную специфичность антителу (то есть, они реагируют с разными антигенами). Эти различия в последовательности аминокислот происходят в так называемом V (вариабельном, переменном) участке молекулы иммуноглобулина (рис. 10.3).

Структура иммуноглобулинов (рис. 10.3): большинство молекул иммуноглобулинов составлены из двух тяжелых (H) цепей и двух легких (L) цепей, соединенных дисульфидными связями. Легкие цепи состоят или из двух k цепей, или из двух l цепей. Тяжелые цепи могут быть одного из пяти классов (IgA, IgG, IgM, IgD, и IgE) (табл.10.4). Существует несколько подклассов тяжелых цепей (изотипы). Эти различные цепи иммуноглобулинов являются антигенами для животных и имеют отличающиеся антигенные детерминанты, поэтому, при введении их животным, антитела, производимые против них, могут использоваться для распознавания и определения различных типов легких цепей и классов тяжелых цепей у человека.

Каждая цепь имеет постоянный и вариабельный участок. Постоянный участок остается постоянным в последовательности аминокислот и антигенности в пределах данного класса иммуноглобулинов; вариабельный участок, напротив, характеризуется большой непостоянностью последовательности аминокислот. Именно в вариабельной части цепи происходит реакция соединения с антигеном. Каждая молекула IgG состоит из двух соединенных цепей, которые формируют два антиген-связывающих участка (рис. 10.3). На вариабельном участке каждой цепи имеются гипервариабельные участки - три в легких цепях и четыре в тяжелых цепях. Разновидности последовательности аминокислот в этих гипервариабельных участках определяют специфичность антитела. При определенных условиях эти гипервариабельные области могут также выступать в роли антигенов (идиотипы). Антитело против идиотипов, т.е. производимое против гипервариабельной области антител, имеет ограниченный диапазон реактивности и соединяется только с молекулами иммуноглобулина, имеющими данную гипервариабельную область. В сущности, реактивность антител против идиотипов ограничена исключительно специфическими антителами, полученными из единственного клона. Хотя вышеописанное относится строго к IgG, другие классы иммуноглобулинов имеют такую же основную структуру, за исключением того, что IgM является пентамером (то есть, состоит из 5 основных единиц (молекул), связанных в области Fc-концов), а IgA обычно существует как димер.

Постоянный участок каждой молекулы иммуноглобулина имеет рецепторы для комплемента, а также имеется на Fc-фрагменте участок, который связывается с клетками, имеющими Fc-рецепторы (что необходимо для осуществления клеточного иммунитета). Унаследованные антигенные различия между тяжелыми цепями составляют аллотипы. Молекулы иммуноглобулинов можно разбить на части различными протеолитическими ферментами. При воздействии папаина молекула разделяется в области расхождения тяжелых цепей («вилки») (рис. 10.3) на два Fab-фрагмента и один Fc-фрагмент (кристаллизующийся). Пепсин разрывает молекулу на F(ab)’2-фрагмент и Fc-фрагмент. Fc-фрагмент представляет собой постоянный участок; отсутствие изменяемости последовательности аминокислот - главная причина возможности кристаллизации данного фрагмента. Fab и F(ab)’2-фрагменты несут один и два антиген-связывающих участка соответственно. Fc-фрагмент несет специфические антигены, включая те, которые определяют иммунологическое различие пяти главных классов антител. Участок фиксации комплемента также расположен на Fc-фрагменте. Метод ферментативного расщепления имеет историческое значение в процессе выяснения структуры иммуноглобулинов.

Регулирование производства антител: производство антител начинается после активации B-клеток антигеном. Максимальная концентрация антител в сыворотке наблюдается с 1 по 2 неделю и затем начинает снижаться. Непрерывное присутствие свободного антигена поддерживает ответ до тех пор, пока увеличение уровня антител не приведет к усиленному удалению антигена и, таким образом, прекращению стимуляции B-клеток. Существуют также более тонкие механизмы регуляции синтеза иммуноглобулинов. T-хелперы (CD4-позитивные) играют важную роль в регуляции ответа В-клеток на большое количество антигенов и их постоянное присутствие увеличивает производство антител. Этот эффект возникает благодаря, по крайней мере частично, высвобождению лимфокинов (табл. 10.3). T-супрессоры (CD8-позитивные) оказывают противоположное влияние, вызывая снижение иммунного ответа; сильное подавление ответа может быть одним из механизмов, лежащих в основе толерантности. Одним из дополнительных регулирующих механизмов является выработка анти-идиотипов (т.е. антител против собственных антител (аутоантител)). Предполагается, что при иммунном ответе производство специфического антитела обязательно сопровождается производством второго антитела (анти-идиотипного) со специфичностью против вариабельных (V) последовательностей (идиотипов или антиген-связывающих участков) первого антитела. Антиидиотипное антитело способно к распознаванию идиотипов на антигенном рецепторе B-клеток (который построен из иммуноглобулина, идентичного по строению идиотипу первого антитела), таким образом оно конкурирует с антигеном и служит для ингибирования активации B-клетки.

РАСПОЗНАВАНИЕ АНТИГЕНОВ И ОСНОВЫ РАЗНООБРАЗИЯ АНТИГЕННЫХ РЕЦЕПТОРОВ

Существуют большое количество различных антител. Все они реагируют с огромным количеством разнообразных антигенов. Аналогично, огромное количество T-клеток распознает огромное количество разнообразных антигенов. Специфическое распознавание антигена осуществляется лимфоцитами, которые имеют рецепторы для антигена на их поверхностях. Существует огромное количество рецепторов с отличающейся специфичностью, реагирующих со всем диапазоном известных антигенов, но каждый лимфоцит имеет рецепторы только для единственного антигена. Отсюда следует, что существует огромное количество лимфоцитов (приблизительно 106-109), имеющих один единственный тип рецептора каждый. Антигенными рецепторами B-лимфоцитов являются иммуноглобулины. Действие механизма перестройки генов (см. ниже) приводит к появлению разнообразных молекул иммуноглобулинов, которые служат как рецепторы для антигенов на поверхности клетки и, в конечном счете, представляют собой специфический иммуноглобулин (антитело), которое будет секретироваться плазматическими клетками после возникновения иммунного ответа. В упрощенном виде, антиген выбирает лимфоциты, которые имеют рецепторы (то есть, поверхностный иммуноглобулин B-клеток), соответствующие ему (подходят друг к другу, как ключ к замку). Это взаимодействие приводит к делению и трансформации B-клетки, и, в конечном счете, к образованию клона плазматических клеток, которые секретируют молекулы антител со специальными связывающими участками, которые являются по существу такими же, как и расположенные на поверхности клетки первоначального лимфоцита, распознавшего антиген (рис. 10.1). T-лимфоциты также имеют рецепторы для антигенов и популяции T-клеток имеют подобную степень разнообразия. Рецептор Т-клетки состоит из пары полипептидных цепей (a- и b-цепи), при этом каждая цепь имеет вариабельный и постоянный участок, таким образом рецептор подобен рецептору В-клетки (который является поверхностным иммуноглобулином). Рецептор Т-клетки таким образом может быть расценен как член «семейства иммуноглобулинов высшего качества», которое включает не только иммуноглобулины, но и другие молекулы, вовлеченные во взаимодействие и распознавание клеток, при этом все они имеют общее эволюционное происхождение. Разнообразие антиген-распознающих рецепторов Т-клетки формируется в раннем эмбриональном периоде при помощи механизма перестройки генов, который похож на механизм образования разнообразия иммуноглобулинов. Также, параллельно с активацией В-клеток, антиген выбирает и T-клетки, несущие рецепторы с соответствующей специфичностью, и, таким образом, стимулирует пролиферацию специфического клона T-клеток, результатом которого является образование поколения многочисленных T-клеток-эффекторов идентичной специфичности. Обратите внимание, что распознавание антигена T-клетками - сложный процесс, вовлекающий пространственное взаимодействие антигена с MHC-молекулой на макрофагах и рецептором антигена Т-клетки при участии CD3 и CD4 или CD8 молекул на T-клетках. T-хелперы распознают антигены, связанные с молекулами MHC II класса, а T-супрессоры и цитотоксические Т-клетки распознают антигены, связанные с молекулами MHC I класса. Были описаны T-клетки, несущие рецептор, составленный из гамма и дельта цепей, однако их функция неизвестна.

ВОЗНИКНОВЕНИЕ РАЗНООБРАЗИЯ: ГЕН-«ПЕРЕТАСОВЫВАЮЩИЙ» МЕХАНИЗМ

Разнообразие антигенных рецепторов на B- и T-клетках возникает на уровне ДНК во время дифференцировки лимфоидных предшественников в эмбриональном периоде. Вовлеченные в данный процесс гены расположены в хромосомах 2 (k цепь), 22 (l цепь), 14 (тяжелые цепи, a и g цепи рецепторов Т-клеток) и 7 (b и d цепи рецепторов Т-клеток). Хотя каждый из этих генов функционирует как «генная единица» производства цепи полипептидов, каждый ген существует в цепи ДНК как сложный «мультиген», состоящий из большого количества различных сегментов ДНК, которые могут быть свернуты или собраны вместе в различных модификациях, что приводит к возникновению многочисленных различных шаблонов ДНК. Например, мультиген тяжелых цепей содержит до 200 различных V (вариабельных) сегментов (VH); каждая кодировка соответствует специфической последовательности аминокислот в антиген-связывающем участке (вариабельном участке) тяжелой цепи иммуноглобулина. Ген тяжелой цепи также содержит множественные D (diversity - разнообразие), J (joining - соединение) и C (constant - постоянная область) сегменты, по одному для каждого подкласса и класса тяжелых цепей (m, d, g1, g2, g3, g4, a1, a2, e). Специальный механизм соединяет по одному сегменту ДНК от каждой категории, формируя VDJC-последовательность, которая служит как функциональный ген, на котором образуется иРНК, кодирующая всю тяжелую цепь. Легкие цепи составляются подобно, за исключением того, что они не содержат сегментов D. Ген бета-цепи T-рецептора также содержит множественные V, D, J, и C гены, кодирующие тяжелую цепь, в то время как ген альфа-цепи T-рецептора содержит только множественные V и J сегменты с единственным C сегментом.

РЕЗУЛЬТАТЫ ВЗАИМОДЕЙСТВИЯ АНТИТЕЛ С АНТИГЕНАМИ

Антитела могут участвовать в следующих реакциях:

Преципитации;

Агглютинации;

Опсонизации;

Нейтрализации;

Клеточной цитотоксичности;

Разрушения клеток с участием комплемента.

Большинство иммуноглобулинов (антител) оказывают прямое влияние на антигены, с которым они специфично реагируют; например, формирование больших агрегатов может приводить к преципитации или агглютинации. Когда антиген является токсином, взаимодействие антиген-антитело может вызывать нейтрализацию токсического воздействия.

В некоторых случаях накопление антител на поверхности антигенной частицы (опсонизация) вызывает повышение фагоцитарной активности макрофагов и нейтрофилов, которые имеют Fc-рецепторы на своей поверхности. Этот процесс назван иммунным фагоцитозом.

Взаимодействие между антигеном и антителом может вызывать структурные повреждения в Fc-фрагменте молекулы иммуноглобулина, которые ведут к активации комплемента.

КОМПЛЕМЕНТ

Активация комплемента. Комплемент - это система плазматических белков (C1-C9), которые существуют в неактивной форме и составляют приблизительно 10% глобулинов крови. Активация комплемента может происходить одним из 2 путей (рис. 10.5):

A. Классический путь: классический путь активации комплемента начинается при взаимодействии IgM или IgG с антигеном. Взаимодействие антитела с антигеном приводит к фиксации C1 к Fc-части молекулы антитела. При этом образуется C1q и возникает каскадная реакция (рис. 10.5). Ранние компоненты (C1, 4, 2) формируют C3 конвертазу, которая расщепляет C3. Конечный комплекс C56789 проявляет фосфолипазную активность и приводит к лизису мембраны клетки (обратите внимание, что полная последовательность выглядит следующим образом 1, 4, 2, 3, 5, 6, 7, 8, 9).

Б. Альтернативный путь (пропердиновый путь): альтернативный путь отличается от классического пути только механизмом активации и ранними реакциями. Расщепление C3 в альтернативном пути не требует взаимодействия антигена с антителами или наличия ранних (C1, C4, C2) факторов комплемента. Каскад запускается аггрегированными комплексами IgG, сложными углеводами и бактериальными эндотоксинами. C3 конвертаза формируется взаимодействием пропердина (глобулин сыворотки), двух других факторов сыворотки (B и D) и ионов магния. Последовательность активации после расщепления C3 - та же самая, как в классическом пути.

Результаты активации комплемента: активация комплемента связана с острым воспалительным ответом, характеризуемым вазодилятацией, увеличением сосудистой проницаемости и экссудацией жидкости, опосредованными анафилотоксическими влияниями C3a и C5a. И C3a, и C5a обладают выраженным хемотаксическим эффектом для нейтрофилов, которые эмигрируют в область воспаления. Антиген удаляется путем 1) иммунного фагоцитоза, который вызывается опсонизирующим влиянием C3b, нейтрофилами и макрофагами, или 2) мембранным лизисом, который вызывает конечный продукт каскада комплемента.

Рецепторы к комплементу: рецепторы к комплементу были обнаружены на поверхности большинства клеток. CD11 - это рецептор нейтрофилов и макрофагов к C3b. CD21 - это рецептор В-лимфоцитов к C3b. CD35 - наиболее широко распространенный рецептор для C3b, найденный на эритроцитах и лейкоцитах; он связывает иммунные комплексы в плазме.

ТИПЫ ИММУННОГО ОТВЕТА

Основываясь на том, была ли иммунная система предварительно знакома с антигеном или нет, различают два типа иммунного ответа: первичный и вторичный.

Первичный иммунный ответ

Первичный иммунный ответ возникает при первой встрече со специфическим антигеном. Хотя антиген распознается почти сразу после попадания в организм, проходит несколько дней, прежде чем выработается достаточное количество иммуноглобулина, чтобы можно было обнаружить увеличение уровня иммуноглобулинов в сыворотке. В течение этого латентного периода те B-клетки, с рецепторами которых прореагировал специфический антиген, проходят от шести до восьми последовательных циклов деления, прежде чем образуется достаточно большой клон плазматических клеток, секретирующих антитела. IgM - первый иммуноглобулин, вырабатываемый в течение первичного ответа; затем вырабатывается IgG. Переключение от синтеза IgM к IgG или других иммуноглобулинов происходит как нормальные явление при активации В-клеток и происходит в результате переключения генов тяжелых цепей.

Иммунологическая память

Память - существенный компонент иммунного ответа, потому что она обеспечивает усиленный, более эффективный ответ на второе и последующие попадания антигена в организм.

Механизм, лежащий в основе иммунологической памяти, окончательно не установлен. После стимуляции антигеном происходит пролиферация лимфоцитов (расширение клона), что приводит к образованию большого количества клеток исполнительного звена (плазматические клетки в системе В-клеток; цитотоксические T-клетки в системе Т-клеток), а также других малых лимфоцитов, которые повторно входят в митотический цикл и служат для пополнения группы клеток, несущих соответствующий рецептор. Предполагается, что так как эти клетки - результат вызванной антигеном пролиферации, то они способны к усиленному ответу при повторной встрече с антигеном (то есть, они действуют как клетки памяти). B семействе В-клеток эти клетки могут также подвергнуться переключению синтеза с IgM на IgG, что объясняет немедленное производство этими клетками IgG во время вторичного иммунного ответа.

Вторичный иммунный ответ

Вторичный иммунный ответ возникает при повторной встрече с антигеном. Повторное распознавание происходит немедленно и производство иммуноглобулинов сыворотки, выявляемое при лабораторных исследованиях, происходит более быстро (за 2-3 дня), чем при первичном ответе. IgG - основной иммуноглобулин, секретируемый во время вторичного ответа. Кроме того, пиковый уровень выше и снижение происходит более медленно, чем при первичном ответе.

Способность вызывать специфический вторичный ответ - функция иммунологической памяти. Этот специфический ответ необходимо дифференцировать от неспецифического увеличения уровня иммуноглобулинов (против антигенов, отличающихся от первоначального антигена), который может возникать после антигенной стимуляции - это так называемый анамнестический ответ, который, вероятно, представляет собой случайную стимуляцию некоторых B-клеток лимфокинами, возникшими при специфическом ответе.

ГУМОРАЛЬНЫЕ ФАКТОРЫ АДАПТИВНОГО ИММУНИТЕТА

Гуморальный иммунитет – одна из форм приобретенного иммунитета. Играет важную роль в противоинфекционной защите организма и обусловливается специфическими антителами , выработанными в ответ на чужеродный антиген . Считают, что патогенные микроорганизмы, размножающиеся в организме внеклеточно, как правило, обусловливают гуморальный иммунитет.

Антигены. Классификация антигенов

Антигены – это высокомолекулярные соединения. При попадании в организм вызывают иммунную реакцию и взаимодействуют с продуктами этой реакции: антителами и активированными лимфоцитами.

Классификация антигенов.

1. По происхождению:

1) естественные (белки, углеводы, нуклеиновые кислоты, бактериальные экзо– и эндотоксины, антигены клеток тканей и крови);

2) искусственные (динитрофенилированные белки и углеводы);

3) синтетические (синтезированные полиаминокислоты, полипептиды).

2. По химической природе:

1) белки (гормоны, ферменты и др.);

2) углеводы (декстран);

3) нуклеиновые кислоты (ДНК, РНК);

4) конъюгированные антигены (динитрофенилированные белки);

5) полипептиды (полимеры a-аминокислот, кополимеры глутамина и аланина);

6) липиды (холестерин, лецитин, которые могут выступать в роли гаптена, но, соединившись с белками сыворотки крови, они приобретают антигенные свойства).

3. По генетическому отношению:

1) аутоантигены (происходят из тканей собственного организма);

2) изоантигены (происходят от генетически идентичного донора);

3) аллоантигены (происходят от неродственного донора того же вида);

4) ксеноантигены (происходят от донора другого вида).

4. По характеру иммунного ответа:

1) тимусзависимые антигены (иммунный ответ зависит от активного участия Т-лимфоцитов);

2) тимуснезависимые антигены (запускают иммунный ответ и синтез антител В-клетками без Т-лимфоцитов).

Выделяют также:

1) Внешние антигены; попадают в организм извне. Это микроорганизмы, трансплантированные клетки и чужеродные частицы, которые могут попадать в организм алиментарным, ингаляционным или парентральным путем;

2) Внутренние антигены; возникают из поврежденных молекул организма, которые распознаются как чужие;

3) Скрытые антигены – определенные антигены (например, нервная ткань, белки хрусталика и сперматозоиды); анатомически отделены от иммунной системы гистогематическими барьерами в процессе эмбриогенеза; толерантность к этим молекулам не возникает; их попадание в кровоток может приводить к иммунному ответу.

Иммунологическая реактивность против измененных или скрытых собственных антигенов возникает при некоторых аутоиммунных заболеваниях.

Свойства антигенов

Антигены разделены на:

1. Полные (иммуногенные), всегда проявляющие иммуногенные и антигенные свойства,

2. Неполные (гаптены), не способные самостоятельно вызывать иммунный ответ.

1. Специфичность – структуры особенно отличающие 1 антиген от другого. Специфический участок – антигенная детерминанта (или эпитоп) избирательно реагирует с рецепторами и специфично с антигенами. Чем больше эпитопов, тем больше вероятности иммунного ответа.

2. Антигенность – избирательное реагирование со специфическими антителами или анти-специфичными клетками, способность вызывать иммунный ответ в определенном организме.

3. Чужеродность – без нее нет антигенности.

4. Иммуногенность – способность создавать иммунитет; зависит: от генетических особенностей, от размера, от количества эпитопов.

5. Толерантность – альтернатива в создании иммунитета; отсутствие иммунного ответа; не отвечает иммунный ответ на антигены – аалергия на уровне организма – иммунологическая терпимость.

Виды антигенов

1. Антигены бактерий:

1) Группоспецифические (встречаются у разных видов одного рода или семейства);

2) Видоспецифические (встречаются у различных представителей одного вида);

3) Типоспецифические (определяют серологические варианты – серовары, антигеновары – внутри одного вида).

2. Антигены вирусов:

1) Суперкапсидные антигены – поверхностные оболочечные;

2) Белковые и гликопротеидные антигены;

3) Капсидные – оболочечные;

4) Нуклеопротеидные (сердцевинные) антигены.

3. Гетероантигены – общие для представителей разных видов антигенные комплексы или общие антигенные детерминанты на различающихся по другим свойствам комплексах. За счет гетероантигенов могут возникать перекрестные иммунологические реакции. У микробов различных видов и у человека встречаются общие, сходные по строению антигены. Эти явления называются антигенной мимикрией.

4. Суперантигены – это особая группа антигенов, которые в очень малых дозах вызывают поликлональную активацию и пролиферацию большого числа Т-лимфоцитов. Суперантигенами являются бактериальные энтеротоксины, стафилококковые, холерные токсины, некоторые вирусы (ротавирусы).