Измерение заряда электрона. Измерение заряда электрона Как обозначается заряд электрона в физике

Электрон (элементарная частица)

Данная статья была написана Владимиром Горунович для сайта "Викизнание", под названием "Электрон в полевой теории", помещена на этот сайт в целях защиты информации от вандалов, а затем дополнена на этом сайте.

Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику,
  • Законы сохранения - фундаментальные законы физики.

В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА.

Использовать не существующие в природе элементарные частицы, выдумывать не существующие в природе фундаментальные взаимодействия, или подменять существующие в природе взаимодействия сказочными, игнорировать законы природы, занимаясь математическими манипуляциями над ними (создавая видимость науки) - это удел СКАЗОК, выдаваемых за науку. В итоге физика скатывалась в мир математических сказок.

    1 Радиус электрона
    2 Электрическое поле электрона
    3 Магнитный момент электрона
    4 Масса покоя электрона
    5 Физика 21 века: Электрон (элементарная частица) - итог

Электрон (англ. Electron) - легчайшая элементарная частица, обладающая электрическим зарядом. Квантовое число L=1/2 (спин = 1/2) - группа лептоны, подгруппа электрона, электрический заряд -e (систематизация по полевой теории элементарных частиц). Стабильность электрона обусловлена наличием электрического заряда, при отсутствии которого электрон бы распадался аналогично мюонному нейтрино.

Согласно полевой теории элементарных частиц, электрон состоит из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей.

Структура электромагнитного поля электрона (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле)

Энергетический баланс (процент от всей внутренней энергии):

  • постоянное электрическое поле (E) - 0,75%,
  • постоянное магнитное поле (H) - 1,8%,
  • переменное электромагнитное поле - 97,45%.

Этим объясняются ярко выраженные волновые свойства электрона и его нежелание участвовать в ядерных взаимодействиях. Структура электрона приведена на рисунке.

1 Радиус электрона

Радиус электрона (расстояние от центра частицы до места в котором достигается максимальная плотность массы) определяемый по формуле:

равен 1,98 ∙10 -11 см.

Занимаемого электроном, определяемый по формуле:

равен 3,96 ∙10 -11 см. К величине r 0~ добавился еще радиус кольцевой области, занимаемой переменным электромагнитным полем электрона. Необходимо помнить, что часть величины массы покоя, сосредоточенной в постоянных (электрическом и магнитном) полях электрона находится за пределами данной области, в соответствии с законами электродинамики.

Электрон больше любого атомного ядра, поэтому не может присутствовать в атомных ядрах, а рождается в процессе распада нейтрона, также как позитрон рождается в процессе распада в ядре протона.

Утверждения о том, что радиус электрона порядка 10 -16 см бездоказательные и противоречат классической электродинамике. При таких линейных размерах электрон должен быть тяжелее протона.

2 Электрическое поле электрона

Электрическое поле электрона состоит из двух областей: внешней области с отрицательным зарядом и внутренней области с положительным зарядом. Размер внутренней области определяется радиусом электрона. Разность зарядов внешней и внутренней областей определяет суммарный электрический заряд электрона -e. В основе его квантования лежат геометрия и строение элементарных частиц.

электрического поля электрона в точке (А) в дальней зоне (r > > r e) точно, в системе СИ равен:

электрического поля электрона в дальней зоне (r > > r e) точно, в системе СИ равна:

где n = r/|r| - единичный вектор из центра электрона в направлении точки наблюдения (А), r - расстояние от центра электрона до точки наблюдения, e - элементарный электрический заряд, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, r e =Lħ/(m 0~ c) - радиус электрона в полевой теории, L - главное квантовое число электрона в полевой теории, ħ - постоянная Планка, m 0~ - величина массы заключенной в переменном электромагнитном поле покоящегося электрона, c - скорость света. (В системе СГС отсутствует множитель .)

Данные математические выражения верны для дальней зоны электрического поля электрона: (r>>r e), а голословные утверждения что "электрическое поле электрона остается кулоновским вплоть до расстояний 10 -16 см" не имеет ничего общего с действительностью - это одна из сказок, противоречащая классической электродинамике.

Согласно полевой теории элементарных частиц, постоянное электрическое поле элементарных частиц с квантовым числом L>0, как заряженных, так и нейтральных, создается постоянной компонентой электромагнитного поля соответствующей элементарной частицы. А поле электрического заряда возникает в результате наличия асимметрии между внешней и внутренней полусферами, генерирующими электрические поля противоположных знаков. Для заряженных элементарных частиц в дальней зоне генерируется поле элементарного электрического заряда, а знак электрического заряда определяется знаком электрического поля, генерируемого внешней полусферой.В ближней зоне данное поле обладает сложной структурой и является дипольным, но дипольным моментом оно не обладает. Для приближенного описания данного поля как системы точечных зарядов потребуется не менее 6 "кварков"внутри электрона - лучше если взять 8 "кварков". Понятное дело, что это выходит за рамки стандартной модели.

У электрона, как и у любой другой заряженной элементарной частицы, можно выделить два электрических заряда и соответственно два электрических радиуса:

  • электрический радиус внешнего постоянного электрического поля (заряда -1.25e) - r q- = 3.66 10 -11 см.
  • электрический радиус внутреннего постоянного электрического поля (заряда +0.25e) - r q+ = 3 10 -12 см.

Данные характеристики электрического поля электрона соответствуют распределению 1 полевой теории элементарных частиц. Физика пока экспериментально не установила точность данного распределения, и какое распределение наиболее точно соответствует реальной структуре постоянного электрического поля электрона в ближней зоне.

Электрический радиус указывает среднее местонахождение равномерно распределенного по окружности электрического заряда, создающего аналогичное электрическое поле. Оба электрических заряда лежат в одной плоскости (плоскости вращения переменного электромагнитного поля элементарной частицы) и имеют общий центр, совпадающий с центром вращения переменного электромагнитного поля элементарной частицы.

Напряженность E электрического поля электрона в ближней зоне (r ~ r e), в системе СИ, как векторная сумма, приблизительно равна:

где n - =r - /r - единичный вектор из ближней (1) или дальней (2) точки заряда q - электрона в направлении точки наблюдения (А), n + =r + /r - единичный вектор из ближней (1) или дальней (2) точки заряда q + электрона в направлении точки наблюдения (А), r - расстояние от центра электрона до проекции точки наблюдения на плоскость электрона, q - - внешний электрический заряд -1.25e, q + - внутренний электрический заряд +0.25e, жирным шрифтом выделены вектора, ε 0 - электрическая постоянная, z - высота точки наблюдения (А) (расстояние от точки наблюдения до плоскости электрона), r 0 - нормировочный параметр. (В системе СГС отсутствует множитель .)

Данное математическое выражение представляет собой сумму векторов и ее надо вычислять по правилам сложения векторов, поскольку это поле двух распределенных электрических зарядов (q - =-1.25e и q + =+0.25e). Первое и третье слагаемое соответствуют ближним точкам зарядов, второе и четвертое - дальним. Данное математическое выражение не работает во внутренней (кольцевой) области электрона, генерирующей его постоянные поля (при одновременном выполнении двух условий: r

Потенциал электрического поля электрона в точке (А) в ближней зоне (r ~ r e), в системе СИ приблизительно равен:

где r 0 - нормировочный параметр, величина которого может отличаться от в формуле E. (В системе СГС отсутствует множитель .) Данное математическое выражение не работает во внутренней (кольцевой) области электрона, генерирующей его постоянные поля (при одновременном выполнении двух условий: r

Калибровку r 0 для обоих выражений ближней зоны необходимо производить на границе области, генерирующей постоянные поля электрона.

3 Магнитный момент электрона

В противовес квантовой теории полевая теория элементарных частиц утверждает, что магнитные поля элементарных частиц не создаются спиновым вращением электрических зарядов, а существуют одновременно с постоянным электрическим полем как постоянная составляющая электромагнитного поля. Поэтому магнитные поля есть у всех элементарных частиц с квантовым числом L>0.

Поскольку величины главного квантового числа L и спина у лептонов совпадают, то могут совпадать и величины магнитных моментов заряженных лептонов у обеих теорий.

Полевая теория элементарных частиц не считает магнитный момент электрона аномальным - его величина определяется набором квантовых чисел в той степени, в какой квантовая механика работает в элементарной частице.

Так, основной магнитный момент электрона создается током:

  • (-) с магнитным моментом -0,5 eħ/m 0e c

Для получения результирующего магнитного момента электрона надо умножить на процент энергии переменного электромагнитного поля, разделенный на 100 процентов и добавить спиновую составляющую (смотри Полевая теория элементарных частиц исходник), в результате получим 0,5005786 eħ/m 0e c. Для того чтобы перевести в обычные магнетоны Бора надо полученное число умножить на два.

4 Масса покоя электрона

В соответствии с классической электродинамикой и формулой Эйнштейна, масса покоя элементарных частиц с квантовым числом L>0, в том числе и электрона, определяется как эквивалент энергии их электромагнитных полей:

где определенный интеграл берется по всему электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты электромагнитного поля: постоянное электрическое поле, постоянное магнитное поле, переменное электромагнитное поле.

Как следует из приведенной формулы, величина массы покоя электрона зависит от условий, в которых электрон находится . Так поместив электрон в постоянное внешнее электрическое поле, мы повлияем на E 2 , что отразится на массе частицы. Аналогичная ситуация возникнет при помещении электрона в постоянное магнитное поле.

5 Физика 21 века: Электрон (элементарная частица) - итог

Перед Вами открылся новый мир - мир дипольных полей, о существовании которых физика 20 века и не подозревала . Вы увидели, что у электрона имеются не один, а два электрических заряда (внешний и внутренний) и соответствующие им два электрических радиуса. Вы увидели, что линейные размеры электрона значительно превышают линейные размеры протона. Вы увидели, из чего складывается масса покоя электрона и что воображаемый бозон Хиггса оказался не у дел (решения Нобелевского комитета - это еще не законы природы...). Более того, величина массы зависит от полей, в которых находится электрон. Все это выходит за рамки представлений, господствовавших в физике второй половины двадцатого века. - Физика 21 века - Новая физика переходит на новый уровень познания материи .

Владимир Горунович

Содержание статьи

ЭЛЕКТРОН, элементарная частица с отрицательным электрическим зарядом, входящая в состав всех атомов, а следовательно, и любого обычного вещества. Это – самая легкая из электрически заряженных частиц. Электроны участвуют почти во всех электрических явлениях. В металле часть электронов не связана с атомами и может свободно перемещаться, благодаря чему металлы хорошо проводят электричество. В плазме, т.е. ионизованном газе, положительно заряженные атомы также перемещаются свободно, но, имея гораздо большую массу, движутся значительно медленнее электронов, а потому вносят меньший вклад в электрический ток. Благодаря малой массе электрон оказался частицей, наиболее вовлеченной в развитие квантовой механики, частной теории относительности и их объединение – релятивистскую квантовую теорию поля. Считается, что в настоящее время полностью известны уравнения, описывающие поведение электронов во всех реально осуществимых физических условиях. (Правда, решение этих уравнений для систем, содержащих большое число электронов, таких, как твердое тело и конденсированная среда, все еще сопряжено с трудностями.)

Все электроны тождественны и подчиняются статистике Ферми – Дирака . Это обстоятельство выражается в принципе Паули, согласно которому два электрона не могут находиться в одном и том же квантовом состоянии. Одно из следствий принципа Паули заключается в том, что состояния наиболее слабо связанных электронов – валентных электронов, определяющих химические свойства атомов, – зависят от атомного номера (зарядового числа), который равен числу электронов в атоме. Атомный номер равен также заряду ядра, выраженному в единицах заряда протона е . Другое следствие состоит в том, что электронные «облака», окутывающие ядра атомов, сопротивляются их перекрытию, вследствие чего обычное вещество обладает свойством занимать определенное пространство. Как и полагается элементарной частице, число основных характеристик электрона невелико, а именно масса (m e » 0,51 МэВ » 0,91Ч 10 –27 г), заряд (- e » - 1,6Ч 10 –19 Кл) и спин (1 / 2 ћ » 1/ 2 Ч 0,66Ч 10 –33 ДжЧ с, где – постоянная Планка h , деленная на 2p ). Через них выражаются все остальные характеристики электрона, например магнитный момент (» 1,001m 3 » 1,001Ч 0,93Ч 10 –23 Дж/Тл), за исключением еще двух констант, характеризующих слабое взаимодействие электронов (см . ниже ).

Первые указания на то, что электричество не является непрерывным потоком, а переносится дискретными порциями, были получены в опытах по электролизу. Результатом явился один из законов Фарадея (1833): заряд каждого иона равен целому кратному заряда электрона, называемого ныне элементарным зарядом е . Наименование «электрон» вначале относилось к этому элементарному заряду. Электрон же в современном смысле слова был открыт Дж.Томсоном в 1897. Тогда было уже известно, что при электрическом разряде в разреженном газе возникают «катодные лучи», несущие отрицательный электрический заряд и идущие от катода (отрицательно заряженного электрода) к аноду (положительно заряженному электроду). Исследуя влияние электрического и магнитного полей на пучок катодных лучей, Томсон пришел к выводу: если предположить, что пучок состоит из частиц, заряд которых не превышает элементарного заряда ионов е , то масса таких частиц будет в тысячи раз меньше массы атома. (Действительно, масса электрона составляет примерно 1/1837 массы легчайшего атома, водорода.) Незадолго до этого Х.Лоренц и П.Зееман уже получили доказательства того, что электроны входят в состав атомов: исследования воздействия магнитного поля на атомные спектры (эффект Зеемана) показали, что у заряженных частиц в атоме, благодаря наличию которых свет взаимодействует с атомом, отношение заряда к массе такое же, как и установленное Томсоном для частиц катодных лучей.

Первая попытка описать поведение электрона в атоме связана с моделью атома Бора (1913). Представление о волновой природе электрона, выдвинутое Л.де Бройлем (1924) (и подтвержденное экспериментально К.Дэвиссоном и Л.Джермером в 1927), послужило основой волновой механики, разработанной Э.Шрёдингером в 1926. Одновременно на основании анализа атомных спектров С.Гаудсмитом и Дж.Уленбеком (1925) был сделан вывод о наличии у электрона спина. Строгое волновое уравнение для электрона было получено П.Дираком (1928). Уравнение Дирака согласуется с частной теорией относительности и адекватно описывает спин и магнитный момент электрона (без учета радиационных поправок).

Из уравнения Дирака вытекало существование еще одной частицы – положительного электрона, или позитрона, с такими же значениями массы и спина, как у электрона, но с противоположным знаком электрического заряда и магнитного момента. Формально уравнение Дирака допускает существование электрона с полной энергией либо і 2 ( 2 – энергия покоя электрона), либо Ј – 2 ; отсутствие радиационных переходов электронов в состояния с отрицательными энергиями можно было объяснить, предположив, что эти состояния уже заняты электронами, так что, согласно принципу Паули, для дополнительных электронов нет места. Если из этого дираковского «моря» электронов с отрицательными энергиями удалить один электрон, то возникшая электронная «дырка» будет вести себя как положительно заряженный электрон. Позитрон был обнаружен в космических лучах К.Андерсоном (1932).

По современной терминологии электрон и позитрон являются античастицами по отношению друг к другу. Согласно релятивистской квантовой механике, для частиц любого вида существуют соответствующие античастицы (античастица электрически нейтральной частицы может совпадать с ней). Отдельно взятый позитрон столь же стабилен, как и электрон, время жизни которого бесконечно, поскольку не существует более легких частиц с зарядом электрона. Однако в обычном веществе позитрон рано или поздно соединяется с электроном. (Вначале электрон и позитрон могут на короткое время образовать «атом», так называемый позитроний, сходный с атомом водорода, в котором роль протона выполняет позитрон.) Такой процесс соединения называется электрон-позитронной аннигиляцией; в нем полная энергия, импульс и момент импульса сохраняются, а электрон и позитрон превращаются в гамма-кванты, или фотоны, – обычно их два. (С точки зрения «моря» электронов данный процесс представляет собой радиационный переход электрона в так называемую дырку – незанятое состояние с отрицательной энергией.) Если скорости электрона и позитрона не очень велики, то энергия каждого из двух гамма-квантов приблизительно равна 2 . Это характеристическое излучение аннигиляции позволяет обнаруживать позитроны. Наблюдалось, например, такое излучение, исходящее из центра нашей Галактики. Обратный процесс превращения электромагнитной энергии в электрон и позитрон называется рождением электрон-позитронной пары. Обычно гамма-квант с высокой энергией «конвертируется» в такую пару, пролетая вблизи атомного ядра (электрическое поле ядра необходимо, поскольку при превращении отдельно взятого фотона в электрон-позитронную пару были бы нарушены законы сохранения энергии и импульса). Еще один пример – распад первого возбужденного состояния ядра 16 О, изотопа кислорода.

Испусканием электронов сопровождается один из видов радиоактивности ядер. Это бета-распад – процесс, обусловленный слабым взаимодействием, при котором нейтрон в исходном ядре превращается в протон. Наименование распада происходит от названия «бета-лучи», исторически присвоенного одному из видов радиоактивных излучений, которое, как потом выяснилось, представляет собой быстрые электроны. Энергия электронов этого излучения не имеет фиксированного значения, поскольку (в соответствии с гипотезой, выдвинутой Э.Ферми) при бета-распаде вылетает еще одна частица – нейтрино, уносящая часть энергии, выделяющейся при ядерном превращении. Основной процесс таков:

Нейтрон ® протон + электрон + антинейтрино.

Испускаемый электрон не содержится в нейтроне; появление электрона и антинейтрино представляет собой «рождение пары» из энергии и электрического заряда, освобождающихся при ядерном превращении. Существует также бета-распад с испусканием позитронов, при котором находящийся в ядре протон превращается в нейтрон. Подобные превращения могут также происходить в результате поглощения электрона; соответствующий процесс называется К -захватом. Электроны и позитроны испускаются при бета-распаде и других частиц, например мюонов.

Роль в науке и технике.

Быстрые электроны широко применяются в современной науке и технике. Они используются для получения электромагнитного излучения, например рентгеновского, возникающего в результате взаимодействия быстрых электронов с веществом, и для генерации синхротронного излучения, возникающего при их движении в сильном магнитном поле. Ускоренные электроны применяют и непосредственно, например в электронном микроскопе, или при более высоких энергиях – для зондирования ядер. (В таких исследованиях была обнаружена кварковая структура ядерных частиц.) Электроны и позитроны сверхвысоких энергий используются в электрон-позитронных накопительных кольцах – установках, аналогичных ускорителям элементарных частиц. За счет их аннигиляции накопительные кольца позволяют с высокой эффективностью получать элементарные частицы с очень большой массой.

Цель работы : определить удельный заряд электрона по движению электрона в диоде, помещенном в магнитном поле.

Оборудование : плата с диодом и катушкой, блок питания, вольтметр, миллиамперметр, амперметр.

ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Удельный заряд – это характеристика элементарных частиц, равная отношению заряда к массе. В некоторых опытах измерение одновременно заряда и массы невозможно, но можно определить удельный заряд, величина которого позволяет установить частицу. Удельный заряд электрона можно определить, например, методом цилиндрического магнетрона.

Магнетрон – это электронная лампа, в которой движением электронов управляет магнитное поле. Магнетрон применяется в радиотехнике для генерации сверхвысокочастотных колебаний. В работе в качестве магнетрона применяется электронная лампа – диод 1Ц 11П, который помещен в магнитное поле катушки с током.

Электроны, испускаемые нагреваемым катодом вследствие явления термоэлектронной эмиссии, движутся к аноду под действием электрического поля. Напряженность электрического поля максимальна у катода, а в остальном пространстве электрическое поле слабое. Поэтому электроны разгоняются около катода, а дальше движутся почти с постоянной скоростью в радиальном направлении к аноду. Скорость электронов V можно определить по закону сохранения энергии. Потенциальная энергия электрона в электрическом поле при движении от катода к аноду превращается в кинетическую энергию:

где е, m – заряд и масса электрона; U – разность потенциалов между катодом и анодом диода.

Если включить магнитное поле, направленное параллельно оси диода, значит, перпендикулярно вектору скорости, то на электроны начинает действовать сила Лоренца

, (2)

где B – индукция магнитного поля.

Направление силы можно определить по правилу левой руки: если четыре пальца вытянуть по скорости, а силовые линии входят в ладонь, то отогнутый большой палец покажет направление силы для положительного заряда. Для отрицательного электрона – наоборот. Сила Лоренца перпендикулярна вектору скорости, следовательно, является центростремительной силой. Поэтому траектория электрона является дугой окружности. По второму закону Ньютона произведение массы электрона на центростремительное ускорение равно силе Лоренца:
Отсюда радиус кривизны траектории равен

. (3)

Как видно, с ростом индукции магнитного поля радиус кривизны дуги уменьшается (рис. 1). При некотором значении индукции магнитного поля, названного критическим В кр , орбита электрона превращается в окружность, которая касается анода. Радиус критической орбиты равен половине радиуса анода R = r / 2. Если еще увеличить магнитное поле, то радиус орбиты еще уменьшится, и траектории электронов не будут касаться анода. Электроны перестанут попадать на анод, и сила анодного тока упадет до нуля.

На самом деле скорости электронов из-за взаимодействия между собой несколько различны, не все электроны движутся перпендикулярно катоду. Поэтому спад анодного тока будет постепенным: сначала не достигнут анода медленные электроны, потом более быстрые. Среднеквадратичной скорости, полученной из уравнения (1), соответствует участок наиболее крутого спада графика (рис. 2).

Решая совместно уравнение (1) и (3) с учетом R = r / 2, получим формулу для расчета удельного заряда электрона


. (4)

Индукция магнитного поля в центре катушки может быть рассчитана по формуле

, (5)

где= 4∙10 -7 Г/м – магнитная постоянная; N – число витков катушки; J кр – сила критического тока; l – длина катушки; β – угол между направлением на крайние витки из центра катушки и её осью.

Экспериментальное измерение удельного заряда электрона производится на лабораторной установке. Она состоит 1) из модуля с электронной лампой, помещенной внутрь катушки; 2) блока питания с амперметром для измерения силы тока в катушке и вольтметром, 3) миллиамперметра для измерения силы анодного тока (рис.3). Модуль и блок питания соединены кабелем.

ВЫПОЛНЕНИЕ РАБОТЫ

1. Установить пределы измерения миллиамперметра 20 мА. Проверить подключение его к модулю к гнездам «РА». Индикатор должен показывать нуль.

2. Включить блок питания в сеть 220 В. Переменными резисторами установить анодное напряжение в интервале 12–120 В, минимальную силу тока через катушку (0,5 А). После нагрева катода в анодной цепи должен появиться ток, регистрируемый миллиамперметром.

Повторить измерения силы анодного тока, изменяя силу тока через катушку в пределах от 0,5 А до 1,5 А через каждые 0,1 А (одно деление шкалы амперметра). Результаты записать в табл. 1.

Таблица 1

3. Записать в табл. 2 параметры установки и анодное напряжение. Выключить ммиллиамперметр и блок питания.

Таблица 2

4. Построить график зависимости силы анодного тока J ан от силы тока в катушке J кат . Размер графика не менее половины страницы. На осях указать равномерный масштаб. Около точек провести плавную кривую так, чтобы отклонения точек были минимальны.

5. Определить по графику среднее значение критической силы тока в катушке J кр как абсциссу середины участка наиболее крутого спада анодного тока (рис. 2). Записать в табл. 2.

7. Оценить систематическую погрешность измерения удельного заряда по формуле

, (6)

полагая, что погрешность обусловлена в основном неточностью определения критического тока. Принять 2 J кр равной ширине участка крутого спада (рис. 2).

9. Cделать выводы. Записать результат
. Сравнить с табличным значением удельного заряда электрона
Кл/кг.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дайте определение удельного заряда частицы. У какой частицы удельный заряд максимален?

2. Запишите формулу силы Лоренца. Как определить направление силы Лоренца? Поясните на примерах.

3. Запишите уравнение второго закона Ньютона для движения электрона в поперечном магнитном поле.

4. Объясните причину изменения траектории электрона между катодом и анодом диода по мере увеличения индукции магнитного поля. Дайте определение критической индукции.

5. Объясните зависимость силы анодного тока с ростом индукции магнитного поля. Почему спад силы тока происходит не скачком при критическом значении индукции?

6. Выведите формулу для расчета удельного заряда электрона по движению в магнетроне.

На основе установленных М. Фарадеем законов электролиза ирландский ученый Д. Стоней выдвинул гипотезу о том, что существует элементарный заряд внутри атома. И в 1891 г. этот заряд Стоней предложил назвать электроном. Величину заряда электрона часто обозначают e или .

Законы электролиза еще не являются доказательством существования электрона как элементарного электрического заряда. Так, существовало мнение, о том, что все одновалентные ионы могут иметь разные заряды, а их средняя величина равна заряду электрона. Для доказательства существования в природе элементарного заряда следовало провести измерение зарядов отдельных ионов, а не суммарное количество электричества. Кроме того, открытым оставался вопрос о том, что связан ли заряд с какой-либо частицей вещества. Существенный вклад в решении этих вопросов сделали Ж. Перрен и Дж. Томсон. Они исследовали законы движения частиц катодных лучей в электрическом и магнитном полях. Перрен показал, что катодные лучи являются потоком частиц, которые несут отрицательный заряд. Томсон установил, что все данные частицы имеют равные отношения заряда к массе:

Помимо этого Томсон показал, что для разных газов отношение частиц катодных лучей одинаково, и не зависит от материала, из которого изготавливался катод. Отсюда можно было сделать вывод о том, что частицы, которые входят в состав атомов разных элементов, одинаковы. Сам Томсон сделал вывод о том, что атомы являются делимыми. Из атома любого вещества можно вырвать частицы, имеющие отрицательный заряд и очень малую массу. Все данные частицы обладают одинаковой массой и одинаковым зарядом. Такие частицы назвали электронами.

Опыты Милликена и Иоффе

Американский ученый Р. Милликен экспериментально доказал то, что элементарный заряд существует. В своих опытах он измерял скорость движения капель масла в однородном электрическом поле, которое создавалось между двумя электрическими пластинами. Капля заряжалась при столкновении с ионом. Сравнивались скорости движения капли не имеющей заряда и этой же капли после столкновения с ионом (приобретшей заряд). Зная напряженность поля между пластинами, вычислялся заряд капли.

Опыты Милликена повторил А.Ф. Иоффе. Он использовал металлические пылинки вместо капель масла. Изменяя напряженность поля между пластинками, Иоффе добивался равенства силы тяжести и силы Кулона, пылинка при этом оставалась неподвижной. Пылинку освещали ультрафиолетом. Заряд ее при этом изменялся, для уравновешивания силы тяжести приходилось изменять напряженность поля. По полученным величинам напряженности ученый судил об отношении электрических зарядов пылинки.

В опытах Милликена и Иоффе было показано, что заряды пылинок и капель всегда изменялись скачком. Минимальное изменение заряда было равно:

Электрический заряд всякого заряженного тела равен целому числу и кратен заряду электрона. Сейчас существует мнение, что имеются элементарные частицы - кварки, которые обладают дробным зарядом ().

Таким, образом, заряд электрона считают равным:

Примеры решения задач

ПРИМЕР 1

Задание В плоском конденсаторе, расстояние, между пластинами которого равно d, неподвижна капля масла, масса ее m. Какое количество избыточных электронов находится на ней, если разность потенциалов между пластинами составляет U?
Решение В данной задаче рассматривается аналог опыта Милликена. На каплю масла действует две силы, которые взаимно компенсируют друг друга. Это сила тяжести и сила Кулона (рис.1).

Так как поле внутри плоского конденсатора можно считать однородным, имеем:

где E - напряжённость электростатического поля в конденсаторе.

Величину электростатической силы можно найти как:

Поскольку частица находится в равновесии и не движется, то по Второму закону Ньютона получаем:

Из формулы (1.3) выразим заряд частицы:

Зная величину заряда электрона (), число избыточных электронов (создающих заряд капли), найдем как:

Ответ

ПРИМЕР 2

Задание Какое количество электронов потеряла капля после облучения ультрафиолетом (см. Пример 1), если ускорение, с которым она стала двигаться вниз равно a?

Решение Второй закон Ньютона для этого случая запишем как:

Сила кулона изменилась, так как изменился заряд частицы после облучения:

В соответствии со вторым законом Ньютона имеем:

Электрон
Electron

Электрон – самая лёгкая отрицательно заряженная частица, составная часть атома. Электрон в атоме связан с центральным положительно заряженным ядром электростатическим притяжением. Он имеет отрицательный заряд е = 1.602 . 10 -19 Кл, массу m е = 0.511 МэВ/с 2 = 9.11 . 10 -28 г и спин 1/2 (в единицах ћ), т.е. является фермионом. Магнитный момент электрона μ е >>μ В, где μ В = ећ/2m е с – магнетон Бора (использована Гауссова система единиц), что согласуется с моделью точечноподобной бесструктурной частицы (согласно опытным данным размер электрона < 10 -17 см). В пределах точности эксперимента электрон стабильная частица. Его время жизни
τ е > 4.6 . 10 26 лет.
Электрон принадлежит к классу лептонов, т.е. не участвует в сильном взаимодействии (участвует в остальных – электромагнитном, слабом и гравитационном). Описание электромагнитного взаимодействия электрона даётся квантовой электродинамикой – одним из разделов квантовой теории поля). У электрона имеется специальная характеристика, присущая лептонам, – электронное лептонное число + 1.
Античастицей электрона является позитрон е + , отличающийся от электрона только знаками электрического заряда, лептонного числа и магнитного момента.

Основные характеристики электрона

Характеристика

Численное значение

Спин J,
Масса m e c 2 , МэВ

0.51099892±0,00000004

Электрический заряд, Кулон

- (1,60217653±0,00000014)·10 -19

Магнитный момент, eћ/2m e c

1.0011596521859± 0.0000000000038

Время жизни , лет
Лептонное число L e
Лептонные числа L μ , L τ

Электрон – первая из открытых элементарных частиц – был открыт Дж. Дж. Томсоном в 1897 г. Изучая характеристики газового разряда, Томсон показал, что катодные лучи, образующиеся в разрядной трубке, состоят из отрицательно заряженных частиц вещества. Отклоняя катодные лучи в электрических и магнитных полях, он определил отношение заряда к массе этих частиц e/m = 6.7·10 17 ед. СГСЭ/г (современное значение 5.27·10 17 ед. СГСЭ/г). Он показал, что катодные лучи представляют собой поток более лёгких, чем атомы, частиц и не зависят от состава газа. Эти частицы были названы электронами. Открытие электрона и установление того факта, что все атомы содержат электроны, явилось важной информацией о внутреннем строении атома.