Тригонометрические равенства. Формулы тригонометрии

Тригонометрия - это один из важнейших разделов, который изучается в курсе алгебры в 10 классе. Ему уделяется достаточно щедрое количество уроков. Ведь для того, чтобы как следует понять тригонометрию и в теории и на практике, необходимо постоянно решать огромное количество примеров, которые укрепят теорию и позволят расширить навыки выполнения той или иной работы: домашней, контрольной, самостоятельной или просто классной.

Видеурок имеет грамотное составление, все последовательно и логично. Структура является четкой, текст составлен грамотно и понятно для школьного уровня. Данный ресурс поможет сделать процесс изучения темы «Формулы понижения степени» намного интереснее и эффективное. Благодаря визуализации, ученики смогут лучше запомнить формулы, а сопровождению спокойным голосом диктора видеозаписи, запоминание ускориться.

Материал, который рассказывается и рассматривается в ресурсе, составлен специалистами таким образом, чтобы полностью раскрыть тему, не упустить ни один важный момент. Это говорит о том, что его можно смело использовать при составлении планов-конспектов к урокам, что делают молодые учителя в обязательном порядке.

Ранее были рассмотрены уже формулы косинуса, синуса, тангенса суммы аргументов, двойного аргумента. Котангенс в отдельности не рассматривался, ведь его всегда можно представить в виде обратной дроби к тангенсу. В этой видеозаписи будут рассматриваться еще одни важные формулы, с помощью которых можно понизить степень.

В первую очередь выводятся формулы понижения квадрата. Мы видим, как просто можно избавиться от второй степени в косинусе и синусе. Для того чтобы школьники могли понять, откуда взялись эти формулы, следующим шагом диктор подробно рассказывает, все шаги. В первую очередь, стоит вспомнить основную формулу в тригонометрии, гласящую о том, что сумма квадрата синуса и косинуса дает нам единицу. Из этого тождества можно вывести в отдельности и квадрат синуса, и косинуса. Вспомнив формулу косинуса и синуса двойного аргумента, можно понять, откуда появились новые правила.

Заметно, что при выполнении любого шага, мы обращаемся к материалу, который ранее был изучен. Это указывает на важность и взаимосвязанность тем в тригонометрии. Ни в коем случае нельзя упускать те или иные темы и приступить к новым. Материал станет непонятным, ведь будет неизвестно, откуда появились те или иные значения и преобразования. Так как тригонометрия содержит большое количество формул, без которых двигаться дальше невозможно, стоит постепенно их запоминать и изучать новые. Также закреплять материал нужно на практике и получать новые навыки, которые пригодятся в дальнейшем при написании контрольных и семестровых работ.

Видеоурок «Формулы понижения степени» после рассмотрения формул переходит к практическому разбору примеров, что, как было уже сказано, очень важно. Примеры будут понятны, при внимательном просмотре самостоятельно либо вместе с учителем.

В первом примере необходимо найти значение некоторого выражения при определенных условиях. При его решении используется формула понижения градуса косинуса. Чтобы она была на виду, в видеозаписи выводится с правой стороны. Таким образом, у учеников будет возможность повторить и пользоваться ею.

После этого диктор предлагает решить похожий пример, в котором используется формула понижения степени синуса. Его школьники могут самостоятельно решить. Если они поняли предыдущий пример, то справятся и с этим.

В итоге приводится еще один более сложный пример. При ее решении используется формула тангенса. Диктор подробно объясняет решение, после чего выводится ответ.

Видеоурок за короткое время расскажет полностью о том, что такое формулы понижения степени и как ими необходимо пользоваться на практике.

ТЕКСТОВАЯ РАСШИФРОВКА:

Формулы понижения степени

называют формулами понижения степени.

Выведем эти формулы:

Из формулы cos 2 х + sin 2 х= 1, из найдем sin 2 х:

sin 2 х= 1-cos 2 х

В формуле cos 2x= cos 2 х - sin 2 х, значение sin 2 х заменим на 1- cos 2 х и получим cos 2 х - (1- cos 2 х)

при раскрытии скобок получаем cos 2 х - 1+ cos 2 х

так как cos 2 х + cos 2 х в сумме 2cos 2 х

получаем, что cos 2x = 2 cos 2 х - 1.

cos 2x = cos 2 х - sin 2 х = cos 2 х - (1-cos 2 х) = 2 cos 2 х - 1.

Отсюда выражаем cos 2 х

cos 2x +1 = 2 cos 2 х

cos 2 х = (квадрат косинуса икс равен полу-сумме единицы и косинуса двойного аргумента).

Мы вывели первую формулу понижения степени для cos 2 х.

Аналогично выведем и вторую формулу понижения степени для sin 2 х:

Из формулы cos 2 х + sin 2 х= 1, из найдем cos 2 х:

cos 2 х = 1 - sin 2 х

В формуле cos 2x= cos 2 х - sin 2 х, значение cos 2 х:

заменим на 1 - sin 2 х

и получим 1 - sin 2 х- sin 2 х

Так как -sin 2 х -sin 2 х в сумме даст -2 sin 2 х,

получаем, что cos 2x = 1 -2 sin 2 х.

Отсюда выражаем sin 2 х:

переносим единицу с противоположным знаком

cos 2x-1 = -2 sin 2 х

меняем знаки на противоположные

1- cos 2x = 2 sin 2 х

делим на 2 обе части равенства:

sin 2 х = (квадрат синуса икс равен полу-разности единицы и косинуса двойного аргумента).

Запомните, формулы, которые мы получили, называют формулами понижения степени.

Такое название было дано из-за того, что в левой части обоих тождеств содержится вторая степень косинуса и синуса, а в правой части - первая степень, т.е наблюдается понижение степени.

Рассмотрим решение примеров с применением формул понижения степени.

ПРИМЕР 1. Зная, что cosx= - и хϵ(π;) (икс принадлежит промежутку от пи до трех пи на два), вычислить cos.

Будем использовать формулу понижения степени

квадрат косинуса икс cos 2 х =, так как, то получим:

по условию cosx= - подставив данные в формулу имеем:

cos 2 = , сделав вычисления в правой части выражения, получим

cos 2 = , извлечем корень квадратный из, получим

По условию π х, следовательно, . Это значит, что аргумент икс, деленное на два принадлежит второй четверти, где косинус отрицательный. Поэтому cos = − .

Ответ: cos = − .

ПРИМЕР 2. Зная, что cosx= - и хϵ (π;)

(икс принадлежит промежутку от пи до трех пи на два), вычислить sin.

Решение. Будем использовать формулу понижения степени sin 2 х =

sin 2 =, так как по условию cosx= -

Имеем: sin 2 = = , извлечем корень квадратный и получим

По условию π х, следовательно, . Это значит, что аргумент икс, деленное на два принадлежит второй четверти, где синус положительный. Поэтому sin = .

Ответ: sin = .

ПРИМЕР 3. Зная, что cosx= - и хϵ(π;) (икс принадлежит промежутку от пи до трех пи на два), вычислить tg.

Решение. Зная, что тангенс икс - это отношение синуса икс к косинусу икс, имеем

в примерах 1 и 2 мы нашли, что sin = и cos = − , поэтому

Для решения некоторых задач будет полезной таблица тригонометрических тождеств, которая позволит гораздо проще совершать преобразования функций:

Простейшие тригонометрические тождества

Частное от деления синуса угла альфа на косинус того же угла равно тангенсу этого угла (Формула 1). См. также доказательство правильности преобразования простейших тригонометрических тождеств .
Частное от деления косинуса угла альфа на синус того же угла равно котангенсу этого же угла (Формула 2)
Секанс угла равен единице, деленной на косинус этого же самого угла (Формула 3)
Сумма квадратов синуса и косинуса одного и того же угла равна единице (Формула 4). см. также доказательство суммы квадратов косинуса и синуса .
Сумма единицы и тангенса угла равна отношению единицы к квадрату косинуса этого угла (Формула 5)
Единица плюс котангенс угла равна частному от деления единицы на синус квадрат этого угла (Формула 6)
Произведение тангенса на котангенс одного и того же угла равно единице (Формула 7).

Преобразование отрицательных углов тригонометрических функций (четность и нечетность)

Для того, чтобы избавиться от отрицательного значения градусной меры угла при вычислении синуса, косинуса или тангенса, можно воспользоваться следующими тригонометрическими преобразованиями (тождествами), основанными на принципах четности или нечетности тригонометрических функций.


Как видно, косинус и секанс является четной функцией , синус, тангенс и котангенс - нечетные функции .

Синус отрицательного угла равен отрицательному значению синуса этого же самого положительного угла (минус синус альфа).
Косинус "минус альфа" даст тоже самое значение, что и косинус угла альфа.
Тангенс минус альфа равен минус тангенс альфа.

Формулы приведения двойного угла (синус, косинус, тангенс и котангенс двойного угла)

Если необходимо разделить угол пополам, или наоборот, перейти от двойного угла к одинарному, можно воспользоваться следующими тригонометрическими тождествами:


Преобразование двойного угла (синуса двойного угла, косинуса двойного угла и тангенса двойного угла ) в одинарный происходит по следующим правилам:

Синус двойного угла равен удвоенному произведению синуса на косинус одинарного угла

Косинус двойного угла равен разности квадрата косинуса одинарного угла и квадрата синуса этого угла

Косинус двойного угла равен удвоенному квадрату косинуса одинарного угла минус единица

Косинус двойного угла равен единице минус двойной синус квадрат одинарного угла

Тангенс двойного угла равен дроби, числитель которой - удвоенный тангенс одинарного угла, а знаменатель равен единице минус тангенс квадрат одинарного угла.

Котангенс двойного угла равен дроби, числитель которой - квадрат котангенса одинарного угла минус единица, а знаменатель равен удвоенному котангенсу одинарного угла

Формулы универсальной тригонометрической подстановки

Указанные ниже формулы преобразования могут пригодиться, когда нужно аргумент тригонометрической функции (sin α, cos α, tg α) разделить на два и привести выражение к значению половины угла. Из значения α получаем α/2 .

Данные формулы называются формулами универсальной тригонометрической подстановки . Их ценность заключается в том, что тригонометрическое выражение с их помощью сводится к выражению тангенса половины угла, вне зависимости от того, какие тригонометрические функции (sin cos tg ctg) были в выражении изначально. После этого уравнение с тангенсом половины угла решить гораздо проще.

Тригонометрические тождества преобразования половины угла

Указанные ниже формулы тригонометрического преобразования половинной величины угла к его целому значению.
Значение аргумента тригонометрической функции α/2 приводится к значению аргумента тригонометрической функции α.

Тригонометрические формулы сложения углов

cos (α - β) = cos α · cos β + sin α · sin β

sin (α + β) = sin α · cos β + sin β · cos α

sin (α - β) = sin α · cos β - sin β · cos α
cos (α + β) = cos α · cos β - sin α · sin β

Тангенс и котангенс суммы углов альфа и бета могут быть преобразованы по следующим правилам преобразования тригонометрических функций:

Тангенс суммы углов равен дроби, числитель которой - сумма тангенса первого и тангенса второго угла, а знаменатель - единица минус произведение тангенса первого угла на тангенс второго угла.

Тангенс разности углов равен дроби, числитель которой равен разности тангенса уменьшаемого угла и тангенса вычитаемого угла, а знаменатель - единице плюс произведение тангенсов этих углов.

Котангенс суммы углов равен дроби, числитель которой равен произведению котангенсов этих углов плюс единица, а знаменатель равен разности котангенса второго угла и котангенса первого угла.

Котангенс разности углов равен дроби, числитель которой - произведение котангенсов этих углов минус единица, а знаменатель равен сумме котангенсов этих углов.

Данные тригонометрические тождества удобно применять, когда нужно вычислить, например, тангенс 105 градусов (tg 105). Если его представить как tg (45 + 60), то можно воспользоваться приведенными тождественными преобразованиями тангенса суммы углов, после чего просто подставить табличные значения тангенса 45 и тангенса 60 градусов.

Формулы преобразования суммы или разности тригонометрических функций

Выражения, представляющие собой сумму вида sin α + sin β можно преобразовать с помощью следующих формул:

Формулы тройного угла - преобразование sin3α cos3α tg3α в sinα cosα tgα

Иногда необходимо преобразовать тройную величину угла так, чтобы аргументом тригонометрической функции вместо 3α стал угол α.
В этом случае можно воспользоваться формулами (тождествами) преобразования тройного угла:

Формулы преобразования произведения тригонометрических функций

Если возникает необходимость преобразовать произведение синусов разных углов косинусов разных углов или даже произведения синуса на косинус, то можно воспользоваться следующими тригонометрическими тождествами:


В этом случае произведение функций синуса, косинуса или тангенса разных углов будет преобразовано в сумму или разность.

Формулы приведения тригонометрических функций

Пользоваться таблицей приведения нужно следующим образом. В строке выбираем функцию, которая нас интересует. В столбце - угол. Например, синус угла (α+90) на пересечении первой строки и первого столбца выясняем, что sin (α+90) = cos α .

Тригонометрические формулы обладают рядом свойств, одно из которых это применение формул понижения степени.Они способствуют упрощению выражений при помощи уменьшения степени.

Определение 1

Формулы понижения работают по принципу выражения степени синуса и косинуса через синус и косинус первой степени, но кратного угла. При упрощении формула становится удобной для вычислений, причем повышается кратность угла от α до n α .

Формулы понижения степени, их доказательство

Ниже приводится таблица формул понижения степенисо 2 по 4 для sin и cos угла. После ознакомления с ними зададим общую формулу для всех степеней.

sin 2 α = 1 - cos 2 α 2 cos 2 α = 1 + cos 2 α 2 sin 3 = 3 · sin α - sin 3 α 4 sin 4 = 3 - 4 · cos 2 α + cos 4 α 8 cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8

Данные формулы предназначены для понижения степени.

Существует формулы двойного угла у косинуса и синуса, из которых и следуют формулы понижения степени cos 2 α = 1 - 2 · sin 2 α и cos 2 α = 2 · cos 2 α - 1 . Равенства разрешаются относительно квадрата синуса и косинуса, которые предоставляются как sin 2 α = 1 - cos 2 α 2 и cos 2 α = 1 + cos 2 α 2 .

Формулы понижения степеней тригонометрических функций перекликаются с формулами синуса и косинуса половинного угла.

Имеет место применение формулы тройного угла sin 3 α = 3 · sin α - 4 · sin 3 α и cos 3 α = - 3 · cos α + 4 · cos 3 α .

Если решать равенство относительно синуса и косинуса в кубе, получим формулы понижения степеней для синуса и косинуса:

sin 3 α = 3 - 4 · cos 2 α + cos 4 α 8 и cos 3 α = 3 · cos α + cos 3 α 4 .

Формулы четвертой степени тригонометрических функций выглядят так: sin 4 α = 3 - 4 · cos 2 α + cos 4 α 8 и cos 4 α = 3 + 4 · cos 2 α + cos 4 α 8 .

Чтобы понизить степени эти выражений, можно действовать в 2 этапа, то есть дважды понижать, тогда это выглядит таким образом:

sin 4 α = (sin 2 α) 2 = (1 - cos 2 α 2) 2 = 1 - 2 · cos 2 α + cos 2 2 α 4 = = 1 - 2 · cos 2 α + 1 + cos 4 α 2 4 = 3 - 4 · cos 2 α + cos 4 α 8 ; cos 4 α = (cos 2 α) 2 = (1 + cos 2 α 2) 2 = 1 + 2 · cos 2 α + cos 2 2 α 4 = = = 1 + 2 · cos 2 α + 1 + cos 4 α 2 4 = 3 + 4 · cos 2 α + cos 4 α 8


Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

Универсальная тригонометрическая подстановка

Обзор основных формул тригонометрии завершаем формулами, выражающими тригонометрические функции через тангенс половинного угла. Такая замена получила название универсальной тригонометрической подстановки . Ее удобство заключается в том, что все тригонометрические функции выражаются через тангенс половинного угла рационально без корней.

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта , включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.