Стандартное состояние вещества в термодинамике. Стандарты термодинамики

Общепринятые сокращения

г – газ, газообразное состояние вещества

ж – жидкость, жидкое состояние вещества

т – твёрдое состояние вещества (в настоящей методичке т – эквивалентно кристаллическому состоянию, так как некристаллическое состояние твёрдого вещества не рассматривается в рамках программы)

aq – растворённое состояние, причем растворитель – вода (от слова aqueous – водный)

ЭДС – электродвижущая сила

Комментарии

Стандартное состояние в термодинамике. Стандартные состояния приняты следующие:

для газообразного вещества, чистого или в газовой смеси, – гипотетическое состояние чистого вещества в газовой фазе, в котором оно имеет свойства идеального газа и стандартное давление р °. В настоящем руководстве принято р ° = 1.01325×10 5 Па (1 атм).

для чистой жидкой или твёрдой фазы, а так же для растворителя жидкого раствора – состояние чистого вещества в соответствующем агрегатном состоянии под стандартным давлением р °.

для растворенного вещества в твёрдом или жидком растворе – гипотетическое состояние этого вещества в растворе со стандартной концентрацией С °, имеющем свойства бесконечно разбавленного раствора (по данном веществу) под стандартным давлением р °. Стандартная концентрация принята С ° = 1 моль/дм 3 .

Выбор стехиометрических коэффициентов. Стехиометрические коэффициенты химической реакции показывают, в каком молярном отношении реагируют между собой данные вещества. Например, в реакции А + В = Z стехиометрические коэффициенты реагирующих веществ равны между собой (по абсолютной величине), из чего следует, что 1 моль А реагирует без остатка с 1 моль В с образованием 1 моль Z. Смысл этой записи не изменится, если выбрать любые другие равные между собой коэффициенты. Например, уравнение 2А + 2В = 2Z отвечает тому же стехиометрическому соотношению между реагирующими веществами. Поэтому в общем случае коэффициенты n i любой реакции определены с точностью до произвольного общего множителя. Однако в разных разделах физической химии приняты разные условности в отношении выбора этого множителя.

В термохимии, в реакциях образования веществ из простых веществ, коэффициенты выбирают так, чтобы перед образующимся веществом стоял коэффициент 1. Например, для образования иодида водорода:

1/2H 2 + 1/2I 2 = HI

В химической кинетике коэффициенты выбирают так, чтобы они совпадали, если это возможно, с порядками реакции по соответствующим реагентам. Например, образование HI имеет первый порядок по H 2 и первый порядок по I 2 . Поэтому, реакция записывается в виде:

H 2 + I 2 ® 2HI

В термодинамике химических равновесий выбор коэффициентов, в общем случае, произволен, но в зависимости от вида реакции предпочтение может быть отдано тому или иному выбору. Например, для выражения константы равновесия кислотной диссоциации принято выбирать коэффициент перед символом кислоты равный 1. В частности, для кислотной диссоциации иодида водорода выбирают

HI ƒ H + + I –

(коэффициент перед HI равен 1).

Обозначения концентраций. При одном и том же символе, концентрация или содержание компонента в смеси может иметь разный смысл. Концентрация может быть равновесной (та, которая достигается при равновесии), текущей (та, которая существует в данный момент времени или на данной стадии процесса) и валовой или "аналитической". Эти концентрации могут различаться. Например, если приготовить раствор уксусного ангидрида (СН 3 СО) 2 О в воде, взяв 1 моль 100%-ого уксусного ангидрида и разбавив его водой до 1 литра, то полученный раствор будет иметь валовую или аналитическую концентрацию С = 1 моль/л (СН 3 СО) 2 О. Фактически, уксусный ангидрид подвергается необратимому гидролизу до уксусной кислоты (СН 3 СО) 2 О + Н 2 О ® 2СН 3 СООН, поэтому его текущая концентрация уменьшается от 1 моль/л в начальный момент времени до равновесной концентрации приблизительно 0 моль/л по окончанию реакции. С другой стороны, в расчёте на полный гидролиз ангидрида, можно сказать, что валовая концентрация раствора составляет 2 моль/л СН 3 СООН (безотносительно к стадии процесса гидролиза). Однако продукт реакции подвержен кислотной диссоциации СН 3 СООН ƒ СН 3 СОО – + Н + , так что реальные концентрации в растворе, включая реальную концентрацию СН 3 СООН, не равны ни одной из валовых. Реальные концентрации СН 3 СООН, СН 3 СОО – и Н + при равновесии называются равновесными. Химики часто используют одно и то же обозначение С для всех этих видов концентраций в предположении, что смысл обозначения ясен из контекста. Если хотят подчеркнуть различие, то для молярных концентраций обычно используют следующие обозначения: С – валовая или аналитическая концентрация, [А] – текущая или равновесная концентрация компонента А, и (иногда) [А] е – равновесная концентрация компонента А. Этот индекс делает написание констант равновесий, типа

Автор Химическая энциклопедия г.р. Н.С.Зефиров

СТАНДАРТНОЕ СОСТОЯНИЕ в химической термодинамике, состояние системы, выбираемое как состояние отсчета при оценке термодинамическое величин. Необходимость выбора СТАНДАРТНОЕ СОСТОЯНИЕ с. обусловлена тем, что в рамках химический термодинамики не может быть рассчитаны абс. значения энергий Гиббса, химический потенциалов, энтальпий и др. термодинамическое величин для данного вещества; возможен расчет лишь относит. значений этих величин в данном состоянии в сравнении с их значением в СТАНДАРТНОЕ СОСТОЯНИЕ с.

СТАНДАРТНОЕ СОСТОЯНИЕ с. выбирают из соображений удобства расчетов; оно может меняться при переходе от одной задачи к другой. Значения термодинамическое величин в СТАНДАРТНОЕ СОСТОЯНИЕ с. называют стандартными и обозначают обычно нулем в верх. индексе, например G 0 , H 0 , m 0 -соответственно стандартные энергия Гиббса, энтальпия, химический потенциал вещества. Для химический реакции D G 0 , D H 0 , D S 0 равны изменениям соответственно G 0 , H 0 и S 0 реагирующей системы в процессе перехода от исходных веществ в СТАНДАРТНОЕ СОСТОЯНИЕ с. к продуктам реакции в СТАНДАРТНОЕ СОСТОЯНИЕ с.

СТАНДАРТНОЕ СОСТОЯНИЕ с. характеризуется стандартными условиями: давлением p 0 , температурой Т 0 , составом (молярная доля x 0). Комиссия ИЮПАК по термодинамике определила (1975) в качестве о сновного СТАНДАРТНОЕ СОСТОЯНИЕ с. для всех газообразных веществ чистое вещество (х 0 = 1) в состоянии идеального газа с давлением р 0 = 1 атм (1,01 10 5 Па) при любой фиксир. температуре. Для твердых и жидких веществ основное СТАНДАРТНОЕ СОСТОЯНИЕс.-это состояние чистого (х 0 = 1) вещества, находящегося под внешний давлением р 0 = 1 атм. В определение СТАНДАРТНОЕ СОСТОЯНИЕ с. ИЮПАК Т 0 не входит, хотя часто говорят о стандартной температуре, равной 298,15 К.

Мн. газы при давлении 1 атм не могут рассматриваться как идеальный газ. СТАНДАРТНОЕ СОСТОЯНИЕ с. в этих случаях не реальное, а некое гипотетич. состояние. Подобный искусств. выбор СТАНДАРТНОЕ СОСТОЯНИЕ с. объясняется простотой расчетов термодинамическое функций для идеального газа.

Для процесса образования химический соединения из простых веществ в термодинамическое справочниках приводятся стандартные энергии Гиббса, энтальпии, энтропии

Для определения этих величин выбирают некоторые простые вещества, для которых, по определению, выполняются условия: = 0, =0, = 0. В качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. для про стых веществ принимают устойчивое фазовое и химический состояние элемента при данной температуре. Это состояние не всегда совпадает с естественным; так, СТАНДАРТНОЕ СОСТОЯНИЕ с. простого вещества фтора при всех температурах-чистый идеальный газ при 1 атм, состоящий из молекул F 2 ; при этом не учитывается диссоциация F 2 на атомы. СТАНДАРТНОЕ СОСТОЯНИЕ с. может быть разным в различные температурных интервалах. Для Na, например, в интервале от 0 до Т пл (370,86 К) СТАНДАРТНОЕ СОСТОЯНИЕ с. простого вещества-чистый металлич. Na при 1 атм; в интервале от Т пл до T кип (1156,15 К)-чистый жидкий Na при 1 атм; выше 1156,15 К-идеальный газ при 1 атм, состоящий исключительно из атомов Na. Т. обр., стандартная энтальпия образования твердого NaF ниже 370,86 К соответствует изменению энтальпии в реакции Na (тв) + 1 / 2 F 2 = = NaF (тв), а в интервале 370,86-1156,15 К соответствует изменению энтальпии в реакции Na (жидк) + 1 / 2 F 2 = NaF(TB).

СТАНДАРТНОЕ СОСТОЯНИЕ с. иона в водном растворе вводится для возможности пересчета экспериментально определяемых энтальпий растворения D aq Н 0 (Н 2 О) в энтальпии образования химический соединения. Так, если известна стандартная энтальпия растворения в воде КСl, а D Н 0 обр [К + , раствор] и [Сl - , раствор]-соответственно энтальпии образования ионов К + и Сl в СТАНДАРТНОЕ СОСТОЯНИЕ с. в водном растворе, то стандартная энтальпия образования КСl может быть рассчитана по уравению: [КСl, тв] = = - D aq H 0 (Н 2 0) +[К + , раствор] +[Сl - , раствор].

В качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. иона в водном растворе, согласно рекомендациям ИЮПАК, принимают состояние данного иона в гипотетич. одномоляльном водном растворе, в котором для рассматриваемого иона энтальпия равна его энтальпии в бесконечно разбавленый растворе. Кроме того, принимают, что энтальпия образования иона Н + в СТАНДАРТНОЕ СОСТОЯНИЕс., т.е. [Н + , раствор, Н 2 О] равна нулю. В результате появляется возможность получения относительных стандартных энтальпий образования др. ионов в растворе на основе наиболее надежных (ключевых) значений энтальпий образования химический соединений. В свою очередь, полученные значения энтальпий образования ионов в растворе служат для определения неизвестных энтальпий образования химический соединение в тех случаях, когда стандартные энтальпии растворения измерены.

СТАНДАРТНОЕ СОСТОЯНИЕ с. компонентов двух- и многокомпонентных систем вводится как состояние отсчета при расчетах термодинамическое активностей, энергий Гиббса, энтальпий, энтропии смешения (последние три величины в СТАНДАРТНОЕ СОСТОЯНИЕ с. равны нулю). Возможен так называемой симметричный выбор СТАНДАРТНОЕ СОСТОЯНИЕ с., при котором в качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. компонента используется его основное СТАНДАРТНОЕ СОСТОЯНИЕ с., определенное согласно ИЮПАК. Если многокомпонентная система является жидкой, то и в качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. компонентов берется их жидкое состояние. Альтернативой служит антисимметричный выбор СТАНДАРТНОЕ СОСТОЯНИЕ с., когда для растворителя сохраняется СТАНДАРТНОЕ СОСТОЯНИЕ с., выбранное согласно рекомендациям ИЮПАК, а для растворенного вещества А в качестве СТАНДАРТНОЕ СОСТОЯНИЕ с. выбирается его состояние в растворе единичной концентрации, обладающим свойствами бесконечно разбавленый раствора. Выбор СТАНДАРТНОЕ СОСТОЯНИЕ с. в этом случае связан с определенной концентрац. шкалой (молярная доля, молярность, моляльность). Антисимметричный выбор СТАНДАРТНОЕ СОСТОЯНИЕ с. удобен в тех случаях, когда растворенное вещество не существует в данной фазе в чистом виде (например, НCl не существует в виде жидкости при комнатной температуре).

Понятие СТАНДАРТНОЕ СОСТОЯНИЕ с. введено Г. Льюисом в нач. 20 в.

Литература: Льюис Дж., Рендалл М., Химическая термодинамика, пер. с англ., М., 1936; Белоусов В. П., Панов М. Ю., Термодинамика водных растворов неэлектролитов, Л., 1983: Воронин Г.Ф., Основы термодинамики, М., 1987, с. 91, 98, 100. М.В. Коробов.

Химическая энциклопедия. Том 4 >>

Основными термодинамическими функциями, используемыми в металлургических расчетах, являются внутренняя энергия U, энтальпияН , энтропияS , а также их важнейшие комбинации: изобарно-изотермическийG = Н - TS и изохорно-изотермический F = U - TS потенциалы, приведенный потенциалФ = -G/Т .

Согласно теореме Нернста для энтропии естественным началом отсчета является нуль градусов по шкале Кельвина, при которой энтропии кристаллических веществ равны нулю. Поэтому с формальных позиций, в принципе, всегда можно измерить или рассчитать абсолютное значение энтропии и использовать его для количественных термодинамических оценок. То есть, в практику выполнения численных термодинамических расчетов энтропия никаких трудностей не вносит.

А вот внутренняя энергия не имеет естественного начала отсчета, и ее абсолютного значения просто не существует. Это же справедливо и для всех остальных термодинамических функций или потенциалов, ибо они линейно связаны с внутренней энергией:

Н = U + PV ;

F = U - TS;

G = H - TS = U - TS + PV;

Ф = -G/T = S - H/T = S - (U + PV )/T.

Следовательно, значения U, H, F, G иФ термодинамической системы из-за неопределенности начала отсчета можно установить только с точностью до констант. Этот факт не приводит к принципиальным осложнениям, т.к. для решения всех прикладных задачдостаточно знать изменение величин термодинамических функций при изменении температуры, давления, объема, при прохождении фазовых и химических превращений.

Но для возможности проведения реальных вычислений потребовалось принять определенные договоренности (стандарты) об однозначном выборе некоторых констант и установить единые правила расчета начальных значений термодинамических функций для всех веществ, встречающихся в природе. Из-за линейной зависимости термодинамических функций H , F , G , Ф от внутренней энергии U это достаточно сделать только для одной из этих функций. Реальнобылоунифицировано начало отсчета значений энтальпии . Сделано этоприданием нулевого значения энтальпиям определенных веществ в определенных состояниях при точно оговоренных физических условиях, которые носят названиестандартных веществ, стандартных условий и стандартных состояний.

Ниже приводится наиболее распространенный набор обсуждаемых договоренностей, рекомендованный Международной комиссией по термодинамике Международного союза по теоретической и прикладной химии (ИЮПАК). Данный набор может быть назван стандартами термодинамики , как практически установившийся в современной литературе по химической термодинамике.

    Стандартные условия

Согласно теореме Нернста, для энтропии естественным началом отсчета, или естественной стандартной температурой, является нуль градусов по шкале Кельвина, при которой энтропии веществ равны нулю. В некоторых справочниках, изданных главным образом в СССР, в качестве стандартной и используется температура 0 К. Не­смотря на большую логичность с физической и математической то­чек зрения, эта температура не получила широкого распространения как стандартная. Это связано с тем, что при низких температурах зависимость теплоемкости от температуры носит очень сложный характер, и для нее не удается использовать доста­точно простые полиномиальные аппроксимации.

Стандаpтные физические условия соответствует давлению в 1 атм (1 физическая атмосфера = 1,01325 баp )и температуре 298,15 К (25°С ). Считается, что такие условия наиболее соответст­вуют реальным физическим условиям в химических лабораториях, в которых проводятся термохимические измерения.

    Стандартные вещества

В природе все обособленные, самостоятельные вещества, назы­ваемые в термодинамике индивидуальными, состоят из чистых элементов таблицы Д.И.Менделеева, или получаются по химиче­ским реакциям между ними. Поэтомудостаточным условием для установления системы отсчета термодинамических величин явля­ется выбор энтальпий только для химических элементов как про­стых веществ. Принято, что энтальпии всех элементов в их стан­дартных состояниях равны нулю при стандартных условиях тем­пературе и давлении. Поэтому химические элементы в термодина­мике называются такжестандартными веществами.

Все остальные вещества рассматриваются как соединения, полученные по химическимреакциям между стандартными веществами (химическими эле­ментами в стандартном состоянии) Они носят название «индивидуальные вещества ». За начало от­счета энтальпий для химических соединений (а также для элементов в нестандартных состояниях) берется значение энтальпии реакции их образования из стандартных веществ, как бы проведенной при стандартных условиях На самом деле, конечно, экспериментально определяется тепловой эффект (энтальпия) реакции в реальных ус­ловиях, а затем пересчитывается на стандартные условия. Эта вели­чина и принимается застандартную энтальпию образования хи­мического соединения, как индивидуального вещества.

При практических расчетах следует помнить, что в термохимии за стандарт принято следующее правило знаков для характери­стики энтальпии. Если при образовании химического соединения тепловыделяется , выбирается знак ”минус ” – тепло теряется для системы при изотермическом проведении процесса. Если для обра­зования химического соединения теплопоглощается , выбирается знак ”плюс ” – тепло подводится к системе из окружающей среды для сохранения изотермичности.

    Стандартные состояния

За такое состояние выбирается равновесная, т.е. наиболее ста­бильная форма существования (агрегатное состояние, молекулярная форма)химического элемента при стандартных условиях Напри­мер, это элементы в твердом состоянии – свинец,углерод в форме графита, в жидком – ртуть и бром, двухатомные молекулы газообразных азота или хлора, одно­атомные благородные газы и т.п.

    Стандартные обозначения

Для обозначения какого-либо термодинамического свойства, рас­считываемого при стандартном давлении от стандартной величиныи называемого поэтомустандартным свойством , используется пра­вый верхний индекс 0 (нуль) у символа. То, что свойство отсчиты­вается от выбранного стандарта, обозначается значком “” перед алгебраическим символом термодинамической функции. Темпера­туру, которой соответствует значение функции, часто приводят в виде правого нижнего индекса. Например,стандартная энтальпия вещества при 298,15 К обозначается как

За стандартные энтальпии индивидуальных веществ принима­ются теплоты их образования по химическим реакциям из стандарт­ных веществ в стандартном состоянии. Поэтому термодинамиче­ские функции иногда обозначают с использованием индекса f (от английского formation – образование):

В отличие от энтальпии для энтропии вычисляется ее абсолютное значение при любой температуре. Поэтому в обозначении энтро­пии отсутствует знак “”:
стандартная энтропия вещества при 298,15 К,стандартная энтропия при температуреТ.

Стандартные свойства веществ при стандартных условиях, т.е. стандартные термодинамические функции сводятся в таблицы термохимических величин и публикуются каксправочники термо­химических величин индивидуальных веществ .

Изобарные процессы наиболее часто встречаются в реально­сти, поскольку технологические процессы стремятся проводить в аппаратах, сообщающихся с атмосферой. Поэтому справочники термохимических данных в большин­стве своем содержат, как необходимую и достаточную информацию для расчета любой термодинамической функции, величины

Если известны значения стандартных абсолютной энтропии и эн­тальпии образования, а также зависимость теплоемкости от тем­пературы , то можно рассчитать значения или изменения значений всех других термодинамических функций.

СТАНДАРТНОЕ СОСТОЯНИЕ в термохимии - состояние вещества, в котором оно находится при температуре 298,15 К и давлении 101,325 кПа (760 мм ртутного столба).

  • - Биометрический показатель, отражающий меру изменчивости количественного признака в группе особей: где: М 0- средняя арифметическая по выборке; М i - значение признака каждой особи; n - число особей в выборке...

    Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

  • - условно выделяемое население, с помощью к-рого производится стандартизация демографических коэффициентов...

    Демографический энциклопедический словарь

  • - то же, что квадратичное отклонение...

    Физическая энциклопедия

  • - показатель степени разброса отдельных индивидуальных наблюдений относительно этого среднего, то есть, мера внутригрупповой изменчивости данного признака...

    Физическая Антропология. Иллюстрированный толковый словарь

  • - в СТАТИСТИКЕ степень отклонения данных наблюдений или множеств от СРЕДНЕГО значения...

    Научно-технический энциклопедический словарь

  • - англ. deviation, standard; нем. Standardabweichung. В статистике - наиболее широко используемое измерение дисперсий оценок...

    Энциклопедия социологии

  • - техническое обслуживание, которое осуществляют в строго регламентированном порядке по стандартным расписаниям и планам...

    Большой бухгалтерский словарь

  • - то лее, что квадратичное отклонение...

    Естествознание. Энциклопедический словарь

  • - О. с., при котором электроды расположены на руках...

    Большой медицинский словарь

  • - О. с., при котором электроды расположены на правой руке и левой...

    Большой медицинский словарь

  • - О. с., при котором электроды расположены на левой руке и левой...

    Большой медицинский словарь

  • - декретное время - таковым является ныне у нас счет времени, установленный по декрету 16 июня 1930 г., на один час вперед против поясного для всей территории СССР. В других государствах, в...

    Морской словарь

  • - вещь, товар, по своим признакам, качествам, свойствам, виду соответствующие типовому образцу...

    Большой экономический словарь

  • - образуется в России из пяти сословных групп в среде городского населения: 1) почетных граждан; 2) гильдейского купечества, местного и иногороднего; 3) мещан или посадских; 4) ремесленников или цеховых и 5) рабочих людей...

    Энциклопедический словарь Брокгауза и Евфрона

  • - тоже, что Квадратичное отклонение...

    Большая Советская энциклопедия

  • - в термохимии - состояние вещества, в котором оно находится при температуре 298,15 К и давлении 101,325 кПа...

    Большой энциклопедический словарь

"СТАНДАРТНОЕ СОСТОЯНИЕ" в книгах

Ойло стандартное

Из книги Исторические байки автора Налбандян Карен Эдуардович

Ойло стандартное 1860-ые. Нефтедобыча в Пенсильвании. Для чего эта самая нефть нужна, человечество ещё толком не знает, посему добыча идёт довольно кустарно. Разливается продукция в любую имеющуюся под рукой тару: пивные бочки, бочкотара из-под рыбы, скипидара и т. д., бочонки

Стандартное отклонение

Из книги Разумное распределение активов. Как построить портфель с максимальной доходностью и минимальным риском автора Бернстайн Уильям

Стандартное отклонение Теперь мы готовы рассчитать риск актива «А». Для этого рассчитывается стандартное отклонение, служащее мерой разброса множества чисел. Расчеты можно произвести вручную, однако это чересчур утомительно. Обычно они производятся с помощью

Стандартное отклонение

Из книги Большая Советская Энциклопедия (СТ) автора БСЭ

Пример: копирование нескольких файлов на стандартное устройство вывода

Из книги Системное программирование в среде Windows автора Харт Джонсон М

Пример: копирование нескольких файлов на стандартное устройство вывода В программе 2.3 иллюстрируется использование стандартных устройств ввода/вывода, а также демонстрируется, как улучшить контроль ошибок и усовершенствовать взаимодействие с пользователем. Эта

5.26. Дисперсия и стандартное отклонение

Из книги Программирование на языке Ruby [Идеология языка, теория и практика применения] автора Фултон Хэл

5.26. Дисперсия и стандартное отклонение Дисперсия - это мера «разброса» значений из набора. (Здесь мы не различаем смещенные и несмещенные оценки.) Стандартное отклонение, которое обычно обозначается буквой?, равно квадратному корню из дисперсии.Data = }