Оксид азота и его соединения. Оксид азота: формула, свойства, применение Азот из атмосферы

ОБЩИЕ СВЕДЕНИЯ

Эмпирическая формула. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NO

Молекулярная масса, кг/кмоль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30,01

Агрегатное состояние. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . газообразное

Внешний вид. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . бесцветный газ

Запах. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . отсутствует

Применение: для получения NH2OH. Присутствует в отходящих дымовых газах при неполном сгорании топлива.

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Плотность при 20 °С и давлении 101,3 кПа, кг/м3 . . . . . . . . . . . . . . . . . . .1,3402

Плотность жидкой фазы при минус 163°С, кг/м3 . . . . . . . . . . . . . . . . . . . . 1332

Температура плавления, °С. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 163,5

Критическая температура, °С. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 93

Критическое давление, МПа. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6,48

Теплота образования, кДж/моль. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91,26

Константы уравнения Антуана, в температурном интервале минус 233 – минус 178°С,

А. . . . . . . . . . . . . 20,1314

В. . . . . . . . . . . . . 1572,52

С. . . . . . . . . . минус 4,88

Динамическая вязкость, Па?с. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183?10-7

Теплоемкость, Дж/(моль?К) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29,86

Мольный объем в критической точке, см3/моль. . . . . . . . . . . . . . . . . . . . . . 58

:

*т- твердое вещество;

Растворимость в воде: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .слабо растворим

Реакционная способность: ниже 1000 0С практически не разлагается. С водой, разбавленными растворами кислот и щелочей не взаимодействует. Растворим в спирте, сероуглероде и серной кислоте. При обычных условиях быстро окисляется до диоксида азота, с повышением температуры скорость реакции уменьшается. Присоединяет галогены с образованием нитрозилгалогенидов (NOHal). С серной кислотой в присутствии воздуха дает нитрозилсерную кислоту (NO)НSО4. Восстанавливается углеродом, фосфором, серой, водородом, металлами, до азота. Окисляется, например, хроматами и перманганатами до азотной кислоты. С солями многих металлов образует нитрозокомплексы.

САНИТАРНО-ГИГИЕНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Класс опасности в воздухе рабочей зоны. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

ПДКм.р. в воздухе рабочей зоны (в пересчете на NO2), мг/м3 . . . . . . . . . . . 5,0

Код вещества, загрязняющего атмосферный воздух. . . . . . . . . . . . . . . . . 0304

Класс опасности в атмосферном воздухе. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

ПДКм.р./с.с. в атмосферном воздухе, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . .0,4/0,06

Воздействие на людей: кровяной яд, оказывает прямое действие на центральную нервную систему.

Меры первой помощи пострадавшим от воздействия вещества: удалить пострадавшего из вредной атмосферы. При нарушении дыхания – кислород. При рефлекторных расстройствах дыхания и сердечной деятельности применяют, так называемую, противодымную смесь (хлороформа 40 ч., 96% этилового спирта 4 ч., серного эфира 20 ч.); к этой смеси добавляют 5 капель нашатырного спирта. При раздражении дыхательных путей - содовые ингаляции, горячее молоко с содой или щелочной минеральной водой. При тяжелом отравлении – госпитализация.

Меры предосторожности: герметизация аппаратуры и коммуникаций, вентиляция помещений. При электро- и газовой сварке внутри аппаратуры, вообще в тесных и замкнутых пространствах, обязательна подача свежего воздуха для вытеснения оксидов азота

Средства защиты: фильтрующий промышленный противогаз. Изолирующие шланговые противогазы с подачей чистого воздуха. Герметичные очки с полумаской. Перчатки резиновые кислотостойкие бесшовные, перхлорвиниловые бесшовные; кислотозащитные рукавицы КР; перчатки, покрытые латексом. Спецодежда, покрытая слоем перхлорвиниловой смолы, или из ткани, обработанной парафино-стеарино-фосфатной эмульсией и латексом СВХ-1. Сапоги, брюки поверх сапог.

ПОЖАРОВЗРЫВООПАСНЫЕ СВОЙСТВА

Группа горючести. . . . . . . . . . . . . . . . . . . . негорючий, пожароопасный газ

При обычной температуре N 2 O - бесцветный газ со слабым приятным запахом и сладковатым вкусом; обладает наркотическим действием, вызывая сначала судорожный смех, затем - потерю сознания.

Способы получения

1. Разложение нитрата аммония при небольшом нагревании:


NH 4 NO 3 = N 2 O + 2Н 2 О


2. Действие HNO 3 на активные металлы


10HNO 3 (конц.) + 4Са = N 2 O + 4Ca(NO 3) 2 + 5Н 2 О

Химические свойства

N 2 O не проявляет ни кислотных, ни основных свойств, т. е. не взаимодействует с основаниями, с кислотами, с водой (несолеобразующий оксид).


При Т > 500"С разлагается на простые вещества. N 2 O - очень сильный окислитель. Например, способен в водном растворе окислить диоксид серы до серной кислоты:


N 2 O + SO 2 + Н 2 О = N 2 + H 2 SO 4

NO - оксид азота (II), монооксид азота.

При обычной температуре NO - бесцветный газ без запаха, малорастворимый в воде, очень токсичный (в больших концентрациях изменяет структуру гемоглобина).

Способы получения

1. Прямой синтез из простых веществ может быть осуществлен только при очень высокой Т:


N 2 + O 2 = 2NО - Q


2. Получение в промышленности (1-я стадия производства HNO 3).


4NH 3 + 5O 2 = 4NО + 6Н 2 О


3. Лабораторный способ - действие разб. HNO 3 на тяжелые металлы:


8HNO 3 + 3Cu = 2NO + 3Cu(NO 3) 2 + 4Н 2 О

Химические свойства

NO - несолеобразующий оксид (подобно N 2 О). Обладает окислительно-восстановительной двойственностью.

I. NO - окислитель

2NO + SO 2 + Н 2 О = N 2 O + H 2 SO 4


2NO + 2H 2 = N 2 + 2Н 2 О (со взрывом)

II. NO - восстановитель

2NO + O 2 = 2NO 2


10NO + 6KMnO 4 + 9H 2 SO 4 = 10HNO 3 + 3K 2 SO 4 + 6MnSO 4 + 4Н 2 О

NO 2 - оксид азота (IV), диоксид азота

При обычной температуре NO 2 - красно-бурый ядовитый газ с резким запахом. Представляет собой смесь NO 2 и его димера N 2 O 4 в соотношении -1:4. Диоксид азота хорошо растворяется в воде.

Способы получения

I. Промышленный - окисление NO: 2NO + O 2 = 2NO 2


II. Лабораторные:


действие конц. HNO 3 на тяжелые металлы: 4HNO 3 + Сu = 2NO 2 + Cu(NO 3) 2 + 2Н 2 О


разложение нитратов: 2Pb(NO 3) 2 = 4NO 2 + O 2 + 2РbО

Химические свойства

NO 2 - кислотный оксид, смешанный ангидрид 2-х кислот

NO 2 взаимодействует с водой, основными оксидами и щелочами. Но реакции протекают не так, как с обычными оксидами - они всегда окислительно - восстановительные. Объясняется это тем, что не существует кислоты со С.О. (N) = +4, поэтому NO 2 при растворении в воде диспропорционирует с образованием 2-х кислот - азотной и азотистой:


2NO 2 + Н 2 О = HNO 3 + HNO 2


Если растворение происходит в присутствии O 2 , то образуется одна кислота - азотная:


4NO 2 + 2Н 2 О + O 2 = 4HNO 3


Аналогичным образом происходит взаимодействие NO 2 со щелочами:


в отсутствие O 2: 2NO 2 + 2NaOH = NaNO 3 + NaNO 2 + Н 2 О


в присутствии O 2: 4NO 2 + 4NaOH + O 2 = 4NaNO 3 + 2Н 2 О

NO 2 - очень сильный окислитель

По окислительной способности NO 2 превосходит азотную кислоту. В его атмосфере горят С, S, Р, металлы и некоторые органические вещества. При этом NO 2 восстанавливается до свободного азота:


10NO 2 + 8P = 5N 2 + 4P 2 O 5


2NO 2 + 8HI = N 2 + 4I 2 + 4Н 2 О (возникает фиолетовое пламя)


В присутствии Pt или Ni диоксид азота восстанавливается водородом до аммиака:


2NO 2 + 7Н 2 = 2NH 3 + 4Н 2 О


Как окислитель NO 2 используется в ракетных топливах. При его взаимодействии с гидразином и его производными выделяется большое количество энергии:


2NO 2 + 2N 2 H 4 = 3N 2 + 4Н 2 О + Q

N 2 O 3 и N 2 O 5 - неустойчивые вещества

Оба оксида имеют ярко выраженный кислотный характер, являются соответственно ангидридами азотистой и азотной кислот.


N 2 O 3 как индивидуальное вещество существует только в твердом состоянии ниже Т пл. (-10 0 С).


С повышением температуры разлагается: N 2 O 3 → NO + NO 2


N 2 O 5 при комнатной температуре и особенно на свету разлагается так энергично, что иногда самопроизвольно взрывается.


Оксид азота(II) Химическая формула NO Отн. молек. масса 30.0061 а. е. м. Молярная масса 30.0061 г/моль Физические свойства Плотность вещества 0.00134 (газ) г/см³ Состояние (ст. усл.) бесцветный газ Термические свойства Температура плавления −163.6 °C Температура кипения −151.7 °C Энтальпия (ст. усл.) 81 кДж/моль Химические свойства Растворимость в воде 0,01 г/100 мл Классификация номер CAS

Окси́д азо́та (II) NO (моноксид азота, окись азота , нитрозил-радикал) - несолеобразующий оксид азота . Он представляет собой бесцветный газ, плохо растворимый в воде. Сжижается с трудом; в жидком и твёрдом виде имеет голубой цвет.

Наличие неспаренного электрона обусловливает склонность NO к образованию слабосвязанных димеров N 2 O 2 . Это непрочные соединения с ΔH° димеризации = 17 кДж. Жидкий оксид азота (II) на 25% состоит из молекул N 2 O 2 , а твердый оксид целиком состоит из них.

Получение

Оксид азота(II) - единственный из оксидов азота, который можно получить непосредственно из свободных элементов соединением азота с кислородом при высоких температурах (1200-1300 °C) или в электрическом разряде. В природе он образуется в атмосфере при грозовых разрядах:

N 2 + O 2 → 2NO - 180,9 кДж 2NO + O 2 → 2NO 2 .

При понижении температуры оксид азота(II) разлагается на азот и кислород, но если температура падает резко, то не успевший разложиться оксид существует достаточно долго: при низкой температуре скорость распада невелика. Такое резкое охлаждение называется «закалкой» и используется при одном из способов получения азотной кислоты .

В лаборатории его обычно получают взаимодействием 30%-ной HNO 3 с некоторыми металлами , например, с медью :

3Cu + 8HNO 3 (30 %) → 3Cu(NO 3) 2 + 2NO + 4H 2 O.

Более чистый, не загрязнённый примесями NO можно получить по реакциям:

FeCl 2 + NaNO 2 + 2HCl → FeCl 3 + NaCl + NO + H 2 O; 2HNO 2 + 2HI → 2NO + I 2 ↓ + 2H 2 O.

Промышленный способ основан на окислении аммиака при высокой температуре и давлении при участии , Cr 2 O 3 (как катализаторов):

4NH 3 + 5O 2 → 4NO + 6H 2 O.

Химические свойства

При комнатной температуре и атмосферном давлении окисление NO кислородом воздуха происходит мгновенно:

2NO + O 2 → 2NO 2

Для NO характерны также реакции присоединения галогенов с образованием нитрозилгалогенидов, в этой реакции NO проявляет свойства восстановителя:

2NO + Cl 2 → 2NOCl (нитрозилхлорид).

В присутствии более сильных восстановителей NO проявляет окислительные свойства:

2SO 2 + 2NO → 2SO 3 + N 2 .

В воде NO мало растворим и с ней не реагирует, являясь несолеобразующим оксидом.

Физиологическое действие

Оксид азота (белый) в цитоплазме клеток хвойных пород деревьев через час после механического воздействия.

Как и все оксиды азота (кроме N 2 O), NO - токсичен, при вдыхании поражает дыхательные пути.

За два последних десятилетия было установлено, что эта молекула NO обладает широким спектром биологического действия, которое условно можно разделить на регуляторное, защитное и вредное. NO, являясь одним из мессенджеров, участвует в регуляции систем внутри- и межклеточной сигнализации. Оксид азота, производимый клетками эндотелия сосудов, отвечает за расслабление гладких мышц сосудов и их расширение(вазодилатацию), предотвращает агрегацию тромбоцитов и адгезию нейрофилов к эндотелию, участвует в различных процессах в нервной, репродуктивной и иммунной системах. NO также обладает цитотоксическими и цитостатическими свойствами. Клетки-киллеры иммунной системы используют оксид азота для уничтожения бактерий и клеток злокачественных опухолей. С нарушением биосинтеза и метаболизма NO связаны такие заболевания, как ассенциальная артериальная гипертензия, ишемическая болезнь сердца, инфаркт миокарда, первичная легочная гипертензия, бронхиальная астма, невротическая депрессия, эпилепсия, нейродегенеративные заболевания (болезнь Альцгеймера, болезнь Паркинсона), сахарный диабет, импотенция и др.

Оксид азота может синтезироваться несколькими путями. Растения используют неферментативную фотохимическую реакцию между NO 2 и каротиноидами. У животных синтез осуществляют семейство NO-синтаз (NOS). NOS-ферменты – члены гем-содержащего суперсемейства ферментов, названных монооксигеназами. В зависимости от структуры и функций, NOS могут быть разделены на три группы: эндотелиальные (eNOS), нейрональные (nNOS) и индуцибельные (iNOS). В активный центр любой из NO-синтаз входит железопорфириновый комплекс, содержащий аксиально координированный цистеин или метионин. Хотя все изоформы NOS катализируют образование NO, все они являются продуктами различных генов, каждая из них имеет свои особенности как в механизмах действия и локализации, так и в биологическом значении для организма. Поэтому указанные изоформы принято также подразделять на конститутивную (cNOS) и индуцибельную (iNOS) синтазы оксида азота. cNOS постоянно находится в цитоплазме, зависит от концентрации ионов кальция и кальмодулина (белок, являющийся внутриклеточным посредником переноса ионов кальция) и способствует выделению небольшого количества NO на короткий период в ответ на стимуляцию рецепторов. Индуцибельная NOS появляется в клетках только после индукции их бактериальными эндотоксинами и некоторыми медиаторами воспаления, такими как гамма-интерферон, фактор некроза опухоли и др. Количество NO, образующегося под влиянием iNOS, может варьировать и достигать больших количеств (наномолей). При этом продукция NO сохраняется длительнее. Характерной особенностью NO является способность быстро (менее чем за 5 секунд) диффундировать через мембрану синтезировавшей его клетки в межклеточное пространство и легко (без участия рецепторов) проникать в клетки-мишени. Внутри клетки он активирует одни энзимы и ингибирует другие, таким образом, участвуя в регуляции клеточных функций. По сути, монооксид азота является локальным тканевым гормоном. NO играет ключевую роль в подавлении активности бактериальных и опухолевых клеток путем либо блокирования некоторых их железосодержащих ферментов, либо путем повреждения их клеточных структур оксидом азота или свободными радикалами, образующимися из оксида азота. Одновременно в очаге воспаления накапливается супероксид, который вызывает повреждение белков и липидов клеточных мембран, что и объясняет его цитотоксическое действие на клетку-мишень. Следовательно, NO, избыточно накапливаясь в клетке, может действовать двояко: с одной стороны вызывать повреждение ДНК и с другой - давать провоспалительный эффект. Оксид азота способен инициировать ангиогенез (образование кровеносных сосудов). В случае инфаркта миокарда оксид азота играет положительную роль, т.к. индуцирует новый сосудистый рост, но при раковых заболеваниях тот же самый процесс вызывает развитие опухолей, способствуя питанию и росту раковых клеток. С другой стороны, вследствие этого улучшается доставка оксида азота в опухолевые клетки. Повреждение ДНК под действием NO является одной из причин развития апоптоза (запрограммированный процесс клеточного «самоубийства», направленный на удаление клеток, утративших свои функции). В экспериментах наблюдалось дезаминирование дезоксинуклеозидов, дезоксинуклеотидов и неповрежденной ДНК при воздействии раствора, насыщенного NO. Этот процесс ответственен за повышение чувствительности клеток к алкилирующим агентам и ионизирующему излучению, что используется в антираковой терапии.

Клиренс NO (скорость очищения крови от NO в процессе его химических превращений) происходит путем образования нитритов и нитратов и составляет в среднем не более 5 секунд. В клиренс могут быть вовлечены промежуточные ступени, связанные со взаимодействием с супероксидом или с гемоглобином с образованием пероксинитрита. Оксид азота может быть восстановлен NO-редуктазой – ферментом, тесно связанным с NO-синтазой.

Введение

Если внимательно взглянуть на азот в периодической системе химических элементов Д. И. Менделеева, то можно заметить, что он имеет переменную валентность. Это значит, что азот образует сразу несколько бинарных соединений с кислородом. Некоторые из них были открыты недавно, а некоторые - изучены вдоль и поперек. Существуют малостабильные и устойчивые оксиды азота. Химические свойства каждого из этих веществ совершенно разные, поэтому при их изучении нужно рассматривать как минимум пять оксидов азота. Вот о них и пойдет речь в сегодняшней статье.

Оксид азота (I)

Формула - N 2 O. Иногда его могут называть оксонитридом азота, оксидом диазота, закисью азота или веселящим газом.

Свойства

В обычных условиях представлен бесцветным газом, имеющим сладковатый запах. Его могут растворять вода, этанол, эфир и серная кислота. Если газобразный оксид одновалентного азота нагреть до комнатной температуры под давлением 40 атмосфер, то он сгущается до бесцветной жидкости. Это несолеобразующий оксид, разлагающийся во время нагревания и показывающий себя в реакциях как восстановитель.

Получение

Этот оксид образуется, когда нагревают сухой Другой способ его получения - термическое разложение смеси "сульфаминовая + азотная кислота".

Применение

Используется в качестве средства для ингаляционного наркоза, пищевая промышленность знает этот оксид как добавку E942. С его помощью также улучшают технические характеристики двигателей внутреннего сгорания.

Оксид азота (II)

Формула - NO. Встречается под названиями монооксида азота, окиси азота и нитрозил-радикала

Свойства

При нормальных условиях имеет вид бесцветного газа, который плохо растворяется в воде. Его трудно сжижить, однако в твердом и жидком состояниях это вещество имеет голубой цвет. Данный оксид может окисляться кислородом воздуха

Получение

Его довольно просто получить, для этого нужно нагреть до 1200-1300 о С смесь азота и кислорода. В лабораторных условиях он образуется сразу при нескольким опытах:

  • Реакция меди и 30%-ного раствора азотной кислоты.
  • Взаимодействие нитрита натрия и соляной кислоты.
  • Реакция азотистой и иодоводородной кислот.

Применение

Это одно из веществ, из которых получают азотную кислоту.

Оксид азота (III)

Формула - N 2 O 3 . Также его могут называть азотистым ангидридом и сесквиоксидом азота.

Свойства

В нормальных условиях является жидкостью, которая имеет синий цвет, а в стандартных - бесцветным газом. Чистый оксид существует только в твердом агрегатном состоянии.

Получение

Образуется при взаимодействии 50%-ной азотной кислоты и твердого оксида трехвалентного мышьяка (его также можно заменить крахмалом).

Применение

С помощью этого вещества в лабораториях получают и ее соли.

Оксид азота (IV)

Формула - NO 2 . Также его могут называть диоксидом азота или бурым газом.

Свойства

Последнее название соответствует одному из его свойств. Ведь этот оксид имеет вид или красно-бурого газа или желтоватой жидкости. Ему присуща высокая химическая активность.

Получение

Данный оксид получают при взаимодействии азотной кислоты и меди, а также во время термического разложения нитрата свинца.

Применение

С помощью него производят серную и азотную кислоты, окисляют жидкое и смесевые

Оксид азота (V)

Формула - N 2 O 5 . Может встречаться под названиями пентаоксида диазота, нитрата нитроила или азотного ангидрида.

Свойства

Имеет вид бецветных и очень летучих кристаллов. Они могут плавиться при температуре 32,3 о С.

Получение

Этот оксид образуется при нескольких реакциях:

  • Дегидрация азотной кислоты оксидом пятивалентного фосфора.
  • Пропускание сухого хлора над
  • Взаимодействие озона с оксидом четырехвалентного азота.

Применение

Из-за своей крайней неустойчивости в чистом виде нигде не используется.

Заключение

В химии существует девять оксидов азота, приведенные выше являются только классическими соединениями этого элемента. Остальные четыре - это, как уже было сказано, нестабильные вещества. Однако их все объединяет одно свойство - высокая токсичность. Выбросы оксидов азота в атмосферу приводят к ухудшению состояния здоровья живущих поблизости от промышленных химических предприятий людей. Симптомы отравления каким-либо из этих веществ - токсический отек легких, нарушение работы центральной нервной системы и поражение крови, причина которого - связывание гемоглобина. Поэтому с оксидами азота необходимо осторожно обращаться и в большинстве случаев использовать средства защиты.

Оксиды – сложные вещества, состоящие из двух элементов, один из которых кислород. В названиях оксидов сначала указывают слово оксид, затем название второго элемента, которым он образован. Какие особенности имеют кислотные оксиды, и чем они отличаются от других видов оксидов?

Классификация оксидов

Оксиды делятся на солеобразующие и несолеобразующие. Уже по названию ясно, что несолеобразующие не образуют солей. Таких оксидов немного: это вода H 2 O, фторид кислорода OF 2 (если условно его считать оксидом), угарный газ, или оксид углерода (II), монооксид углерода CO; оксиды азота (I) и (II): N 2 O (оксид диазота, веселящий газ) и NO (монооксид азота).

Солеобразующие оксиды образуют соли при взаимодействии с кислотами или щелочами. В качестве гидроксидов им соответствуют основания, амфотерные основания и кислородосодержащие кислоты. Соответственно они называются основными оксидами (например, CaO), амфотерными оксидами (Al 2 O 3) и кислотными оксидами, или ангидридами кислот (CO 2).

Рис. 1. Виды оксидов.

Часто перед учащимися встает вопрос, как отличить основной оксид от кислотного. Прежде всего необходимо обратить внимание на второй элемент рядом с кислородом. Кислотные оксиды – содержат неметалл или переходный металл (CO 2 , SO 3 , P 2 O 5) основные оксиды – содержат металл (Na 2 O, FeO, CuO).

Основные свойства кислотных оксидов

Кислотные оксиды (ангидриды) – вещества, которые проявляют кислотные свойства и образуют кислородосодержащие кислоты. Следовательно, кислотным оксидам соответствуют кислоты. Например, кислотным оксидам SO 2 ,SO 3 соответствуют кислоты H 2 SO 3 и H 2 SO 4 .

Рис. 2. Кислотные оксиды с соответствующими кислотами.

Кислотные оксиды, образуемые неметаллами и металлами с переменной валентностью в высшей степени окисления (например, SO 3 , Мn 2 O 7), реагируют с основными оксидами и щелочами, образуя соли:

SO 3 (кислотный оксид)+CaO (основной оксид)=СaSO 4 (соль);

Типичными реакциями являются взаимодействие кислотных оксидов с основаниями в результате чего образуется соль и вода:

Mn 2 O 7 (кислотный оксид)+2KOH (щелочь)=2KMnO 4 (соль)+H 2 O (вода)

Все кислотные оксиды, кроме диоксида кремния SiO 2 (кремниевый ангидрид, кремнезем), реагируют с водой, образуя кислоты:

SO 3 (кислотный оксид)+H 2 O (вода)=H 2 SO 4 (кислота)

Кислотные оксиды образуются при взаимодействии с кислородом простых и сложных веществ (S+O 2 =SO 2), либо при разложении в результате нагревания сложных веществ, содержащих кислород, – кислот, нерастворимых оснований, солей (H 2 SiO 3 =SiO 2 +H 2 O).

Список кислотных оксидов:

Название кислотного оксида Формула кислотного оксида Свойства кислотного оксида
Оксид серы (IV) SO 2 бесцветный токсичный газ с резким запахом
Оксид серы (VI) SO 3 легколетучая безцветная токсичная жидкость
Оксид углерода (IV) CO 2 бесцветный газ без запаха
Оксид кремния (IV) SiO 2 бесцветные кристаллы, обладающие прочностью
Оксид фосфора (V) P 2 O 5 белый легковозгораемый порошок с неприятным запахом
Оксид азота (V) N 2 O 5 вещество, состоящее из бесцветных летучих кристаллов
Оксид хлора (VII) Cl 2 O 7 бесцветная маслянистая токсичная жидкость
Оксид марганца (VII) Mn 2 O 7 жидкость с металлическим блеском, являющаяся сильным окислителем.

Рис. 3. Примеры кислотные оксиды.

Что мы узнали?

Кислотные оксиды относятся к солеобразующим оксидам и образуются с помощью кислот. Кислотные оксиды вступают в реакции с основаниями и водой, а их образование происходит при нагревании и разложении сложных веществ.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 532.