Аэробное дыхание осуществляется у всех. Анаэробное дыхание растений

(в редких случаях - и эукариотами) в анаэробных условиях. При этом факультативные анаэробы используют акцепторы электронов с высоким окислительно-восстановительным потенциалом (NO 3 − , NO 2 − , Fe 3+ , фумарат , диметилсульфоксид и т. д.), у них это дыхание конкурирует с энергетически более выгодным аэробным и подавляется кислородом. Акцепторы с низким окислительно-восстановительным потенциалом (сера , SO 4 2− , CO 2) применяются только строгими анаэробами, гибнущими при появлении в среде кислорода. В корневых системах многих растений при гипоксии и аноксии, вызванных затоплением посевов в результате длительных дождей или весенних паводков, развивается анаэробное дыхание с использованием в качестве акцепторов электронов альтернативных кислороду соединений, например нитратов. Установлено, что растения, произрастающие на полях, удобренных нитратными соединениями, переносят переувлажнение почвы и сопутствующую ему гипоксию лучше, нежели такие же растения без нитратной подкормки.

Механизмы окисления органических субстратов при анаэробном дыхании, как правило, аналогичны механизмам окисления при аэробном дыхании. Исключением является использование в качестве исходного субстрата ароматических соединений. Обычные пути их катаболизма требуют молекулярного кислорода уже на первых стадиях, в анаэробных условиях осуществляются иные процессы, например, восстановительная деароматизация бензоил-КоА у Thauera aromatica с затратой энергии АТФ. Некоторые субстраты (например, лигнин) при анаэробном дыхании не могут использоваться.

Нитратное и нитритное дыхание

Больше путей переноса протонов через мембрану анаэробная ЭТЦ не содержит (в аэробной же их 3), в связи с чем нитратное дыхание по эффективности в расчёте на 1 моль глюкозы составляет лишь 70 % от аэробного. При поступлении в среду молекулярного кислорода бактерии переключаются на обычное дыхание.

Нитратное дыхание встречается, хотя и редко, и среди эукариот. Так, нитратное дыхание, сопровождающееся денитрификацией и выделением молекулярного азота, недавно открыто у фораминифер . До этого нитратное дыхание с образованием N 2 O было описано у грибов Fusarium и Cylindrocarpon (см. .

Сульфатное дыхание

В настоящее время известен ряд бактерий, способных окислять органические соединения или молекулярный водород в анаэробных условиях, используя в качестве акцепторов электронов в дыхательной цепи сульфаты , тиосульфаты , сульфиты , молекулярную серу . Этот процесс получил название диссимиляционной сульфатредукции, а бактерии, осуществляющие этот процесс - сульфатвосстанавливающих или сульфатредуцирующих.

Все сульфатвосстанавливающие бактерии - облигатные анаэробы.

Сульфатвосстанавливающие бактерии получают энергию в процессе сульфатного дыхания при переносе электронов в электронтранспортной цепи. Перенос электронов от окисляемого субстрата по электронтранспортной цепи сопровождается возникновением электрохимического градиента ионов водорода с последующим синтезом АТФ .

Подавляющее большинство бактерий этой группы хемоорганогетеротрофы. Источником углерода и донором электронов для них являются простые органические вещества - пируват , лактат , сукцинат , малат , а также некоторые спирты . У некоторых сульфатвосстанавливающих бактерий обнаружена способность к хемолитоавтотрофии, когда окисляемым субстратом является молекулярный водород .

Сульфатвосстанавливающие эубактерии широко распространены в анаэробных зонах водоёмов разного типа, в иле , в почвах , в пищеварительном тракте животных . Наиболее интенсивно восстановление сульфатов происходит в соленых озерах и морских лиманах , где почти нет циркуляции воды, и содержится много сульфатов. Сульфатвосстанавливающим эубактериям принадлежит ведущая роль в образовании сероводорода в природе и в отложении сульфидных минералов . Накопление в среде H 2 S часто приводит к отрицательным последствиям - в водоемах к гибели рыбы , в почвах к угнетению растений . С активностью сульфатвосстанавливающих эубактерий связана также коррозия в анаэробных условиях различного металлического оборудования, например, металлических труб.

Фумаратное дыхание

В качестве акцептора электронов может использоваться фумарат . Фумаратредуктаза сходна с нитритредуктазой: лишь вместо молибдоптерин содержащей субъединицы в её состав входит ФАД и гистидин содержащая субъединица. Трансмембранный протонный потенциал образуется аналогичным образом: перенос протонов не происходит, однако фумаратредуктаза связывает протоны в цитоплазме, а дегидрогеназы в начале ЭТЦ выделяют протоны в периплазму. Перенос электронов с дегидрогеназ на фумаратредуктазу происходит обычно через мембранный пул менохинонов.

Фумарат, как правило, отсутствует в природных местообитаниях и образуется самими микроорганизмами из аспартата , аспарагина , сахаров , малата и цитрата . В виду этого большинство бактерий, способных к фумаратному дыханию содержат фумаразу, аспартат:аммиак-лиазу и аспарагиназу , синтез которого контролирует чувствительный к молекулярному кислороду белок Fnr.

Фумаратное дыхание достаточно широко распространено среди эукариот, в частности у животных (среди животных, у которых оно описано - пескожил , мидии , аскарида , печеночная двуустка и др .)

Железистое дыхание

Дыхание ацетогенных бактерий

Строго анаэробные ацетогенные бактерии родов Acetobacterium , Clostridium , Peptostreptococcus и др. способны получать энергию, окисляя водород углекислым газом. При этом две молекулы CO 2 образуют ацетат . Энергия при этом запасается в виде трансмембранного градиента протонов (Clostridium sp. ) или ионов натрия (Acetobacterium woodi ). Для перевода его в энергию связей АТФ используется обычная H-транспортирующая АТФ-синтаза или Na-зависимая АТФ-синтаза соответственно.

Анаэробное дыхание у растений

Анаэробное дыхание , в частности нитратное , активируется в корневых системах некоторых растений в условиях аноксии и гипоксии . Однако если у многих бактерий и некоторых протистов и животных оно может быть основным и достаточным для получения энергии процессом (часто наряду с гликолизом), то у растений функционирует почти исключительно в стрессовых условиях. Так или иначе, но на полях, где в качестве удобрений были внесены нитраты , растения лучше переносят гипоксию , вызванную переувлажнением почвы из-за продолжительных дождей .

Анаэробное дыхание у грибов, протистов и животных

Среди животных анаэробное фумаратное дыхание встречается у некоторых паразитических и свободноживущих червей, ракообразных, моллюсков; нитратное дыхание известно среди грибов (например, у Fusarium)

Выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ .

Больше путей переноса протонов через мембрану анаэробная ЭТЦ не содержит (в аэробной же их 3), в связи с чем нитратное дыхание по эффективности в расчёте на 1 моль глюкозы составляет лишь 70 % от аэробного. При поступлении в среду молекулярного кислорода бактерии переключаются на обычное дыхание.

Нитратное дыхание встречается, хотя и редко, и среди эукариот. Так, нитратное дыхание, сопровождающееся денитрификацией и выделением молекулярного азота, недавно открыто у фораминифер . До этого нитратное дыхание с образованием N 2 O было описано у грибов Fusarium и Cylindrocarpon (см. .

Сульфатное дыхание

В настоящее время известен ряд бактерий, способных окислять органические соединения или молекулярный водород в анаэробных условиях, используя в качестве акцепторов электронов в дыхательной цепи сульфаты , неорганические тиосульфаты , сульфиты , молекулярную серу . Этот процесс получил название диссимиляционной сульфатредукции, а бактерии, осуществляющие этот процесс - сульфатвосстанавливающих или сульфатредуцирующих.

Все сульфатвосстанавливающие бактерии - облигатные анаэробы.

Сульфатвосстанавливающие бактерии получают энергию в процессе сульфатного дыхания при переносе электронов в электронтранспортной цепи. Перенос электронов от окисляемого субстрата по электронтранспортной цепи сопровождается возникновением электрохимического градиента ионов водорода с последующим синтезом АТФ .

Подавляющее большинство бактерий этой группы хемоорганогетеротрофы. Источником углерода и донором электронов для них являются простые органические вещества - пируват , лактат , сукцинат , малат , а также некоторые спирты . У некоторых сульфатвосстанавливающих бактерий обнаружена способность к хемолитоавтотрофии, когда окисляемым субстратом является молекулярный водород .

Сульфатвосстанавливающие эубактерии широко распространены в анаэробных зонах водоёмов разного типа, в иле , в почвах , в пищеварительном тракте животных . Наиболее интенсивно восстановление сульфатов происходит в соленых озерах и морских лиманах , где почти нет циркуляции воды, и содержится много сульфатов. Сульфатвосстанавливающим эубактериям принадлежит ведущая роль в образовании сероводорода в природе и в отложении сульфидных минералов . Накопление в среде H 2 S часто приводит к отрицательным последствиям - в водоемах к гибели рыбы , в почвах к угнетению растений . С активностью сульфатвосстанавливающих эубактерий связана также коррозия в анаэробных условиях различного металлического оборудования, например, металлических труб.

Фумаратное дыхание

В качестве акцептора электронов может использоваться фумарат . Фумаратредуктаза сходна с нитритредуктазой: лишь вместо молибдоптерин содержащей субъединицы в её состав входит ФАД и гистидин содержащая субъединица. Трансмембранный протонный потенциал образуется аналогичным образом: перенос протонов не происходит, однако фумаратредуктаза связывает протоны в цитоплазме, а дегидрогеназы в начале ЭТЦ выделяют протоны в периплазму. Перенос электронов с дегидрогеназ на фумаратредуктазу происходит обычно через мембранный пул менохинонов.

Фумарат, как правило, отсутствует в природных местообитаниях и образуется самими микроорганизмами из аспартата , аспарагина , сахаров , малата и цитрата . В виду этого большинство бактерий, способных к фумаратному дыханию содержат фумаразу, аспартат: аммиак-лиазу и аспарагиназу , синтез которого контролирует чувствительный к молекулярному кислороду белок Fnr.

Аэробное дыхание - это окислительный процесс, в ходе которого расходуется кислород . При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.

Аэробное дыхание включает два основных этапа:

  • бескислородный , в процессе которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);
  • кислородный , в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.

На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т. п). Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.

Примером такого процесса является гликолиз - многоступенчатое бескислородное расщепление глюкозы. В реакциях гликолиза шестиуглеродная молекула глюкозы (C 6) расщепляется на две трехуглеродные молекулы пировиноградной кислоты (C 3). При этом образуются две молекулы АТФ, и выделяются атомы водорода. Последние присоединяются к переносчику НАД + (никотинамидадениндинуклеотид), который переходит в свою восстановленную форму НАД ∙ H + H + . НАД - кофермент, близкий по своей структуре к НАДФ. Оба они представляют собой производные никотиновой кислоты - одного из витаминов группы В. Молекулы обоих коферментов электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:

H → H + + e - ,

а второй присоединяется к НАД или НАДФ целиком:

НАД + + H + → НАД ∙ H + Н + .

Свободный протон позднее используется для обратного окисления кофермента.

Суммарно реакция гликолиза имеет вид:

C 6 H 12 O 6 + 2АДФ + 2Н 3 РO 4 + 2НАД + → 2C 3 H 4 O 3 + 2АТФ + 2НАД ∙ H + H + + 2Н 2 O.

Продукт гликолиза - пировиноградная кислота (C 3 H 4 O 3) - заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь происходит полное окисление пировиноградной кислоты до CO 2 и H 2 O. Этот процесс можно разделить на три основные стадии:

  1. окислительное декарбоксилирование пировинофадной кислоты;
  2. цикл трикарбоновых кислот (цикл Кребса);
  3. заключительная стадия окисления - электронтранспортная цепь.

На первой стадии пировиноградная кислота взаимодействует с веществом, которое называют коферментом А (сокращенно его обозначают КоА), в результате чего образуется адетилкофермент А с высокоэнергетической связью. При этом от молекулы пировиноградной кислоты отщепляется молекула CO 2 (первая) и атомы водорода, которые запасаются в форме НАД ∙ H + H + .

Вторая стадия - цикл Кребса (названный так в честь открывшего его английского ученого Ганса Кребса).

В цикл Кребса вступает ацетил-КоА, образованный на предыдущей стадии. Ацетил-КоА взаимодействует со щавелево-уксусной кислотой (четырехутлеродное соединение), в результате образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил-КоА. Далее превращение идет через образование ряда органических кислот, в результате чего ацетильные группы, поступающие в цикл при гидролизе ацетил-КоА, дегидрируются с высвобождением четырех пар атомов водорода и декарбоксилируются с образованием двух молекул CO 2 . При декарбоксилировании для окисления атомов углерода до CO 2 используется кислород, отщепляемый от молекул воды. В конце цикла щавелево-уксусная кислота регенерируется в прежнем виде. Теперь она способна вступить в реакцию с новой молекулой ацетил-КоА, и цикл повторяется. В процессе цикла используются три молекулы воды, выделяются две молекулы СO 2 и четыре пары атомов водорода, которые восстанавливают соответствующие коферменты (ФАД - флавина-дениндинуклеотид и НАД). Суммарно реакция цикла может быть выражена следующим уравнением:

ацетил-КоА + ЗH 2 O + ЗНАД + + ФАД + АДФ + H 3 PO 4 → КоА + 2CO 2 + ЗНАД ∙ H + H + + ФАД ∙ H 2 + АТФ.

Таким образом, в результате распада одной молекулы пировиноградной кислоты в аэробной фазе (декарбоксилирование ПВК и цикла Кребса) выделяется ЗCO 2 , 4НАД ∙ H + H + , ФАД ∙ H 2 .

Суммарно реакцию гликолиза, окислительного декарбоксилирования и цикла Кребса можно записать в следующем виде:

C 6 H 12 O 6 + 6H 2 O + 10НАД + + 2ФАД → 6CO 2 + 4АТФ + 10НАД ∙ H + H + + 2ФАД ∙ H 2 .

Третья стадия - электронтранспортная цепь.

Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов окисляются молекулярным кислородом до H 2 O с одновременным фосфорилированием АДФ в АТФ. Происходит это тогда, когда водород, отделившийся от НАД ∙ H 2 и ФАД ∙ H 2 , передается по цепи переносчиков, встроенных во внутреннюю мембрану митохондрий. Пары атомов водорода 2H можно рассматривать как 2H + + 2e - . Именно в таком виде они и передаются по цепи переносчиков. Путь переноса водорода и электронов от одной молекулы переносчика к другой представляет собой окислительно-восстановительный процесс. При этом молекула, отдающая электрон или атом водорода, окисляется, а молекула, воспринимающая электрон или атом водорода, восстанавливается. Движущей силой транспорта атомов водорода в дыхательной цели является разность потенциалов.

С помощью переносчиков ионы водорода H + переносятся с внутренней стороны мембраны на ее внешнюю сторону, иначе говоря, из матрикса митохондрии в межмембранное пространство.

При переносе пары электронов от НАД на кислород они пересекают мембрану три раза, и этот процесс сопровождается выделением на внешнюю сторону мембраны шести протонов. На заключительном этапе электроны переносятся на внутреннюю сторону мембраны и акцептируются кислородом.

½O 2 + 2e - → O 2- .

В результате такого переноса ионов H + на внешнюю сторону мембраны митохондрий в перимитохондриальном пространстве создается повышенная концентрация их, т. е. возникает электрохимический градиент протонов (ΔμH +).

Протонный градиент представляет собой как бы резервуар свободной энергии. Эта энергия используется при обратном потоке протонов через мембрану для синтеза АТФ. В ряде случаев может наблюдаться непосредственное использование энергии протонного градиента (ΔμH +). Она может обеспечивать осмотическую работу и транспорт веществ через мембрану против градиента их концентрации, использоваться на механическую работу и др. Таким образом, клетка располагает двумя формами энергии - АТФ и ΔμH + . Первая форма - химическая. АТФ растворяется в воде и легко используется в водной фазе. Вторая (ΔμH +) - электрохимическая - неразрывно связана с мембранами. Эти две формы энергии могут переходить друг в друга. При образовании АТФ используется энергия ΔμH + , при распаде АТФ энергия может аккумулироваться в виде ΔμH + .

Когда протонный градиент достигает определенной величины, ионы водорода из H + -резервуара движутся по специальным каналам в мембране, и их запас энергии используется для синтеза АТФ. В матриксе они соединяются с заряженными частичками O 2- , и образуется вода: 2H + + O 2- → H2O.

Процесс образования АТФ в результате переноса ионов H + через мембрану митохондрии получил название окислительного фосфорилирования . Он осуществляется при участии фермента АТФ-синтетазы. Молекулы АТФ-синтетазы располагаются в виде сферических гранул на внутренней стороне внутренней мембраны митохондрий.

В результате расщепления двух молекул пировиноградной кислоты и переноса ионов водорода через мембрану по специальным каналам синтезируется в целом 36 молекул АТФ (2 молекулы в цикле Кребса и 34 молекулы в результате переноса ионов H + через мембрану).

Следует обратить внимание на то, что ферментные системы ориентированы в митохондриях противоположно тому, как это имеет место в хлоропластах: в хлоропластах H + -резервуар находится с внутренней стороны внутренней мембраны, а в митохондриях - с ее наружной стороны; при фотосинтезе электроны движутся в основном от воды к переносчикам атомов водорода, при дыхании же переносчики водорода, передающие электроны в электронтранспортную цепь, находятся с внутренней стороны мембраны, а электроны в конечном счете включаются в образующиеся молекулы воды.

Кислородный этап, таким образом, дает энергии в 18 раз больше, чем ее запасается в результате гликолиза. Суммарное уравнение аэробного дыхания можно выразить следующим образом:

C 6 H 12 O 6 + 6O 2 + 6H 2 O + 38АДФ + З8H 3 PO 4 → 6CO 2 + 12H 2 O + 38АТФ.

Совершенно очевидно, что аэробное дыхание прекратится в отсутствие кислорода, поскольку именно кислород служит конечным акцептором водорода. Если клетки не получают достаточного количества кислорода, все переносчики водорода вскоре полностью насытятся и не смогут передавать его дальше. В результате основной источник энергии для образования АТФ окажется блокированным.

Аэробное расщепление пировиноградной кислоты. Цикл трикарбоновых кислот, цепь переноса электронов и окислительное фосфолирирование. Выход энергии при аэробном расщеплении углеводов.

Пируваты (соли пировиноградной кислоты) - важные химические соединения в биохимии. Они являются конечным продуктом метаболизма глюкозы в процессе гликолиза. Одна молекула глюкозы превращается при этом в две молекулы пировиноградной кислоты. Дальнейший метаболизм пировиноградной кислоты возможен двумя путями - аэробным и анаэробным. В условиях достаточного поступления кислорода пировиноградная кислота превращается в ацетил-кофермент А, являющийся основным субстратом для серии реакций, известных как цикл Кребса, или цикл трикарбоновых кислот. Пируват также может быть превращён в анаплеротической реакции в оксалоацетат. Оксалоацетат затем окисляется до углекислого газа и воды.

Цикл трикарбоновых кислот. За один оборот цикла из ацетил-КоА образуется 2 молекулы углекислоты, 8 восстановительных эквивалентов и 1 АТФ. Коферменты в этом случае передают водород в электротранспортную цепь (ЭТЦ), где и происходит синтез АТФ. Цикл трикарбоновых кислот выполняет функцию не только конечного окисления питательных веществ, но и обеспечивает организм многочисленными предшественниками для процессов биосинтеза.

Цепь переноса электронов - ряд ферментов и белков, присутствующих в живых клетках, по которым передаются электроны. Цепь включает по меньшей мере пять переносчиков. В конце цепи водород соединяется с молекулярным кислородом и образует воду. Промежуточные переносчики водорода претерпевают при этом ряд окислительно-восстановительных реакций. В конечном итоге это приводит к преобразованию химической энергии в легко доступную форму, которая может накапливаться в живом организме (в форме АТФ). Самой важной цепью передачи электронов является дыхательная цепь, присутствующая в митохондриях и участвующая в процессе клеточного дыхания.

НАД - ФП - FeS - кофермент Q - цитохромы - O2

НАД - никотинамидадениндинуклеотид, ФП - флавопротеины, FeS - железосерные белки, цитохромы b, ci, с, а и а3 представляют собой белки, к которым присоединены молекулы гема железо-порфирина.

Эта цепь называется цепью переноса электронов, т.к. протоны движутся вдоль мембраны, происходит окисление и одновременное образование АТФ.

При аэробном дыхании конечным акцептором является кислород, получается существенный выигрыш энергии по сравнению с анаэробным типом дыхания. В энергетическом отношении наиболее выгодно аэробное дыхание, поскольку при аэробном типе окисления глюкозы высвобождается 674 кал. Аэробные микроорганизмы осуществляют окисление белков, жиров, углеводов и др, сложных органических соединений, до аммиака, воды и углекислого газа, тем самым получают необходимую энергию. Аэробы могут расти и развиваться только лишь при наличии свободного кислорода. Примерами являются: Bacillus, Nocardia, Spirillum, Pseudomonas.



Анаэробное дыхание – это биохимический процесс окисления органических субстратов с использованием в качестве конечного акцептора электронов вместо кислорода других окислителей органической или неорганической природы. Анаэробы получают необходимую энергию расщеплением сложной молекулы органического вещества на более простые. При этом выделяется гораздо меньше энергии, чем при кислородном дыхании. Анаэробное дыхание служит основой жизнедеятельности бактерий, дрожжей, плесневых грибов. Итак анаэробы развиваются без доступа свободного кислорода, присутствие которого угнетает их жизнедеятельность. Выделяют три вида анаэробного дыхания: 1)Анаэробное нитратное дыхание – восстановление нитратов или нитритов до молекулярного азота. 2)Анаэробное сульфатное дыхание – восстановление сульфатов до сероводорода. 3)Брожение – расщепление органических углеродосодержащих соединений.

У микроорганизмов очень пластичный метаболизм. Анаэробное дыхание - это процесс, при котором конечным акцептором электроном являетсяне кислород, а другой органический или неорганический субстрат. Неполное окисление - еще один механизм - разновидность аэробного дыхания, но продукты сами по себе богаты энергией, поэтому энергетический выход неполного окисления меньше, чем при аэробном дыхании.
Анаэробное дыхание. В процессе биохимической эволюции возник такой тип метаболизма, который позволил микроорганизмам переносить электрон в дыхательной цепи в безкислородных условиях. В результате такого безкислородного процесса обеспечивался синтез АТФ по механизму окислительного фосфорилирования. Безусловно, что такое анаэробное дыхание позволяло извлекать энергии в гораздо большем объеме, чем при брожении. У анаэробно дышащих микроорганизмов существует ДЦ и ЦТК. В зависимости от природы конечного акцептора ДЦ различают следующие виды:
Энергетический процесс Конечный акцептор электронов Продукты восстановления
Нитратное дыхание и денитрификация NO3-, NO2- NO2-, NO, N2O, N2
Сульфатное и серное дыхание SO42-, S0 H2S
Карбонатное дыхание CO2 ацетат
Фумаратное дыхание фумарат сукцинат
К анаэробному дыханию способны не только облигатные анаэробы, но и факультативные микроорганизмы, которые в аэробной среде осуществляют аэробное дыхание, а в анаэробной среде - анаэробное. Так в анаэробной среде у таких микроорганизмов в отсутствии кислорода происходит изменение направления восстановительных эквивалентов (протона, электона и атомарного водорода) с кислородом на из перечисленных акцепторов, так например, микроорганизмы, которые осуществляют нитратное дыхание имеют разветвление дыхательной цепи на уровне цитохрома в:

Фермент, который перебрасывает электрон (восстановительный эквивалент) на неорганический субстрат - редуктаза.
Нитратное дыхание. При нитратном дыхании 1 из продуктов - нитрит, который накапливается в культуральной жидкости, питьевой воде. Поступление нитритов в организм вызывает заболевание - цианоз. Ионы нитрита связываются с гемоглобином и препятствуют переносу кислорода.
Сульфатное дыхание. Осуществляется сульфатредуцирующими бактериями р. Desulfovibrio и Desulfotomaculum. Эти микроорганизмы - основная группа микроорганизмов, потребляющих Н2S, образуемый в природе и способствуют отложению суьфид минералов в природе. Накопление сероводорода в водоёмах отрицательно влияет на флору и фауну, приводит к их гибели.
Серное дыхание приводит к образованию сероводорода как конечного акцептора дыхательной цепи.
Карбонатное дыхание. Осуществляют архебактерии-метанообразующие. Акцептор электрона - СО2, а окисленный продукт Н2. В качестве супстрата используют навоз и получают биогаз и биоудобрения.
Железное дыхание. Осуществляют почвенные бактерии в анаэробной среде. Соли Fe3+ должны проникнуть внутрь клетки. У этих бактерий есть переносчики - сидерофоры, которые переводят железо в растворимую форму.
Фумаратное дыхание. Осуществляют хемоорганотрофные анаэробные бактурии. Фумарат восстанавливается до сукцината.

Неполное окисление

Неполное окисление - исключительно аэробный процесс, АТФ-окислительное фосфорилирование. Конечные продукты неполностью окислены, то есть сами по себе содержат достаточно большой запас энергии (фумаровая кислота, уксусная кислота) продукты напоминают брожение. Инода процесс называют окислительное брожение. Все микроорганизмы имеют полноценную дыхательную цепь и конечным акцептором является О2
Усксусно-кислое брожение (неполное окисление). Осуществляют уксусно-кислые бактерии- Г-, неспороорбразующие палочки, подвижные за счет перетрихиально или полярно расположенных жгутиков. Есть неподвижные. Строгие (иногда факультативные) аэробы. Объединены в р.Acetomonas (Gluconobacter), Acetobacter. Все микроорганизмы нуждаются в сложных питательных средах, в определенных витаминах. В качестве исходного энергетическоо продукта используют спирты этиловый, глицерол, глюконовый). Переводят их в уксусную кислоту, глицериновую, глюконовую.
Процесс идёт в две стадии:
СН3 - СН2 - ОН + НАД+→СН3СНО+НАД∙Н2
СН3СНО+НАД+ +Н2О→СН3СООН+НАД∙Н2
Ацетомонас - 6 АТФ из 1 молекулы этилового спирта
Ацетобактер - 18 АТФ
Микроорганизмы рода ацетомонас накапливают уксусную кислоту в культуральной жидкости до тех пор, пока в среде есть спирт, который они окисляют. Как только спирт утилизируется полностью из среды, микроорганизмы используют уксусную кислоту как энергетический субстрат, включая ее в ЦТК, который у этих микроорганизмов функционирует полноценно. Процесс утилизации уксусной кислоты до СО2 и Н2О проходит по типу аэробного дыхания.

Хемолитотрофные микроорганизмы

В качестве источника энергии используют неорганические вещества. Известно групп Прокариот, которые окисляют 5 элементов: Н, S, N, Fe, C, Sb.
Получеие энергии происходит в результате дыхания, так как конечный акцептор электронов в ДЦ является кислород, и лишь немногие могут получать энергию за счет анаэробного дыхания.
Так как всем необходим Карбон, то подавляющее большинство микроорганизмов-литотрофов являются хемолитотрофами, используют СО2 воздуха, который фиксируется в цепи Кальвина.
Имеют полноценную ДЦ. Разнообразность наблюдается на начальных участках энергетического метаболизма, так как для окисления неорганических соединений, связанных с получением энергии, необходима соответствующая ферментативная система. Используют в качестве доноров электронов неорганические соединения различного окислительно-восстановительного потенциала. Это определяет место включения электрона в ДЦ из окисляемого субстрата.
При окислении Н2 происходит восстановление НАД+ (первичного акцептора ДЦ), при окислении S, Fe, N, электрон сбрасывается на терминальный участок ДЦ на уровне цитохрома. То что электрон сбрасывается на цитохромы порождает 2 проблемы хемолитотрофных микроорганизмов:
Связана с тем, что получать незначительную порцию энергии в виде АТФ. Эта проблема решена за счет увеличения скорости окисления субстрата.
Включение электрона в терминальной части ДЦ не позволяет микроорганизмам получать восстановитель НАД∙Н2, который необходим для биосинтетических нужд. Эта проблема решена за счет обратного переноса электрона на НАД∙Н2 по ДЦ против электрохимического потенциала. Обратный перенос электрона сопровождается затратой АТФ. Энергия АТФ микроорганизмов используется на биосинтетические процессы, в том числе и на фиксацию СО2 в цикле Кальвина.