История открытия логарифмов применение число е. Что такое логарифм? можно познакомиться с функциями и производными

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ЛОГАРИФМИЧЕСКОЙ И ПОКАЗАТЕЛЬНОЙ ФУНКЦИЙ В РАЗЛИЧНЫХ ОБЛАСТЯХ ЕСТЕСТВОЗНАНИЯ И МАТЕМАТИКИ

В курсе математики средней и старшей школы мы получаем большой объём математических знаний.

Порой многие понятия курса алгебры и математического анализа 10-11 классов носят абстрактный характер, и мы задаёмся вопросом: «А где применяются те знания, которые мы получаем на уроках математики?»

Так возникла идея: исследовать в каких областях науки, техники нашли применение логарифмы, логарифмическая и показательная функции.

Задавшись целью (исследовать в каких областях науки, техники нашли применение логарифмы, логарифмическая и показательная функции) и определив задачи (актуализация практической значимости математических знаний; развитие нравственных представлений о природе математики, сущности и происхождении математических абстракций; понимание значимости математики для научно-технического прогресса.) мы провели большую исследовательскую работу и выяснили, что логарифмы, логарифмическая и показательная функции имеют прикладное значение в следующих областях естествознания: физике, химии, биоло­гии, географии, астрономии, а так же экономике банковского дела и производства.

История возникновения логарифма

Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание, а извлечение корня степени n сводится к делению логарифма подкоренного выражения на n. Первым эту идею опубликовал в своей книге «Arithmetica integra» Михаэль Штифель, который, впрочем, не

приложил серьёзных усилий для реализации своей идеи.

Ø В 1614 году шотландский математик-любитель Джон Непер опубликовал на латинском языке сочинение под названием «Описание удивительной таблицы логарифмов». В нём было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов, косинусов и тангенсов, с шагом 1". Термин логарифм, предложенный Непером, утвердился в науке. Логарифмом числа x называют показатель степени y, в которую надо возвести некоторое фиксированное число a, чтобы получить исходное число x: a y =x . Записывают: y = log a x.

Ø Уже спустя 5 лет, в 1619 г., лондонский учитель математики Джон Спайделл переиздал таблицы Непера, преобразованные так, что они фактически стали таблицами натуральных логарифмов (хотя масштабирование до целых чисел Спайделл сохранил). Термин «натуральный логарифм» предложил итальянский математик Пьетро Менголи в середине XVI века.

Ø И только в ХХ веке Владимир Модестович Брадис придумал способ, позволяющий до минимума сократить утомительные расчеты. Выбрать наиболее необходимые для инженерных расчетов функции, один раз посчитать их значения с приемлемой точностью в широком интервале аргументов. А результаты расчетов представить в виде таблиц. Кропотливых расчетов В.М. Брадису предстояло проделать много. Но они экономили массу времени всем последующим пользователям его таблиц.

Эти таблицы стали советским бестселлером. С 1930 года их издавали едва ли не ежегодно в течение тридцати лет. Эту книжку читали миллионы. Школьники, студенты, инженеры – таблицы Брадиса были у всех.

(от греческого λόγος - «слово», «отношение» и ἀριθμός - «число») числа b по основанию a (log α b ) называется такое число c , и b = a c , то есть записи log α b =c и b=a c эквивалентны. Логарифм имеет смысл, если a > 0, а ≠ 1, b > 0.

Говоря другими словами логарифм числа b по основанию а формулируется как показатель степени , в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки вытекает, что вычисление x= log α b , равнозначно решению уравнения a x =b.

Например:

log 2 8 = 3 потому, что 8=2 3 .

Выделим, что указанная формулировка логарифма дает возможность сразу определить значение логарифма , когда число под знаком логарифма выступает некоторой степенью основания. И в правду, формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа .

Вычисление логарифма именуют логарифмированием . Логарифмирование - это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей трансформируется в суммы членов.

Потенцирование - это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов трансформируются в произведение сомножителей.

Достаточно часто используются вещественные логарифмы с основаниями 2 (двоичный), е число Эйлера e ≈ 2,718 (натуральный логарифм) и 10 (десятичный).

На данном этапе целесообразно рассмотреть образцы логарифмов log 7 2, ln5, lg0.0001.

А записи lg(-3), log -3 3.2, log -1 -4.3 не имеют смысла, так как в первой из них под знаком логарифма помещено отрицательное число , во второй - отрицательное число в основании, а в третьей - и отрицательное число под знаком логарифма и единица в основании.

Условия определения логарифма.

Стоит отдельно рассмотреть условия a > 0, a ≠ 1, b > 0.при которых дается определение логарифма . Рассмотрим, почему взяты эти ограничения. В это нам поможет равенство вида x = log α b , называемое основным логарифмическим тождеством , которое напрямую следует из данного выше определения логарифма.

Возьмем условие a≠1 . Поскольку единица в любой степени равна единице, то равенство x=log α b может существовать лишь при b=1 , но при этом log 1 1 будет любым действительным числом . Для исключения этой неоднозначности и берется a≠1 .

Докажем необходимость условия a>0 . При a=0 по формулировке логарифма может существовать только при b=0 . И соответственно тогда log 0 0 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Исключить эту неоднозначность дает условие a≠0 . А при a<0 нам бы пришлось отвергнуть разбор рациональных и иррациональных значений логарифма, поскольку степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Именно по этой причине и оговорено условие a>0 .

И последнее условие b>0 вытекает из неравенства a>0 , поскольку x=log α b , а значение степени с положительным основанием a всегда положительно.

Особенности логарифмов.

Логарифмы характеризуются отличительными особенностями , которые обусловили их повсеместное употребление для значительного облегчения кропотливых расчетов. При переходе «в мир логарифмов» умножение трансформируется на значительно более легкое сложение, деление — на вычитание, а возведение в степень и извлечение корня трансформируются соответствующе в умножение и деление на показатель степени.

Формулировку логарифмов и таблицу их значений (для тригонометрических функций) впервые издал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, увеличенные и детализированные прочими учеными, широко использовались при выполнении научных и инженерных вычислений, и оставались актуальными пока не стали применяться электронные калькуляторы и компьютеры.

ФГОУ СПО ХАКАССКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ

Внеаудиторная самостоятельная работа по теме:

История возникновения логарифма. Логарифмирование и потенцирование

Выполнил студент группы ТВТ-11

Романов Иван.

Проверил преподаватель:

Волкова Татьяна Валерьевна

1 Вещественный логарифм

      1.1 Свойства

      1.2 Натуральные логарифмы

      1.3 Десятичные логарифмы

      1.4 Логарифмическая функция

      • 1.4.1 Исследование логарифмической функции

2 Комплексный логарифм

      2.1 Многозначная функция

      2.2 Аналитическое продолжение

      2.3 Риманова поверхность

3 Исторический очерк

      3.1 Вещественный логарифм

      3.2 Комплексный логарифм

4 Логарифмические таблицы

Логарифмы

Логарифм. Основное логарифмическое тождество.

Свойства логарифмов. Десятичный логарифм. Натуральный логарифм.

Логарифмом положительного числа N по основанию (b > 0, b 1)называется показатель степени x , в которую нужно возвести b, чтобы получить N .

Обозначение логарифма:

Эта запись равнозначна следующей: b x = N .

П р и м е р ы: log 81 = 4 , так как 3 4 = 81 ;

log 27 = 3 , так как (1/3)  3 = 3 3 = 27 .

Вышеприведенное определение логарифма можно записать в виде тождества:

Основные свойства логарифмов.

1) log b = 1 , так как b 1 = b .

2) log 1 = 0 , так как b 0 = 1 .

3) Логарифм произведения равен сумме логарифмов сомножителей:

log ( ab ) = log a + log b .

4) Логарифм частного равен разности логарифмов делимого и делителя:

log ( a / b ) = log a – log b .

5) Логарифм степени равен произведению показателя степени на логарифм её основания:

log ( b k ) = k · log b .

Следствием этого свойства является следующее: логарифм корня равен логарифму подкоренного числа, делённому на степень корня:

6) Если в основании логарифма находится степень, то величину, обратную показателю степени, можно вынести за знак логарифма:

Два последних свойства можно объединить в одно:

7) Формула модуля перехода (т.e. перехода от одного основания логарифма к другому основанию):

В частном случае при N = a имеем:

Десятичным логарифмом называется логарифм по основанию 10. Он обозначается lg , т.е. log 10 N = lg N . Логарифмы чисел 10, 100, 1000, ... pавны соответственно 1, 2, 3, …, т.е. имеют столько положительных

единиц, сколько нулей стоит в логарифмируемом числе после единицы. Логарифмы чисел 0.1, 0.01, 0.001, ... pавны соответственно –1, –2, –3, …, т.е. имеют столько отрицательных единиц, сколько нулей стоит в логарифмируемом числе перед единицей (считая и нуль целых). Логарифмы остальных чисел имеют дробную часть, называемую мантиссой . Целая часть логарифма называется характеристикой . Для практического применения десятичные логарифмы наиболее удобны.

Натуральным логарифмом называется логарифм по основанию е . Он обозначается ln , т.е. log e N = ln N . Число е является иррациональным, его приближённое значение 2.718281828. Оно является пределом, к которому стремится число (1 + 1 / n ) n при неограниченном возрастании n (см. так называемый второй замечательный предел в разделе "Пределы"). Как это ни покажется странным, натуральные логарифмы оказались очень удобными при проведении различного рода операций, связанных с анализом функций. Вычисление логарифмов по основанию е осуществляется гораздо быстрее, чем по любому другому основанию.

Логарифм

Графики логарифмических функций

Логарифм числа b по основанию a (от греч. λόγος - «слово», «отношение» и ἀριθμός - «число» ) определяется как показатель степени , в которую надо возвести число a , чтобы получить число b . Обозначение: . Из определения следует, что записи и равносильны.

Пример: , потому что .

Вещественный логарифм

Логарифм вещественного числа log a b имеет смысл при .

Наиболее широкое применение нашли следующие виды логарифмов.

Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию , например: . Эта функция определена в правой части числовой прямой: x > 0, непрерывна и дифференцируема там (см. рис. 1).

Свойства

Доказательство [показать]

Докажем, что .

(так как по условию bc > 0).

Доказательство [показать]

Докажем, что

(так как по условию

Доказательство [показать]

Докажем, что .

(так как b p > 0 по условию).

Доказательство [показать]

Докажем, что

Доказательство [показать]

Используем для доказательства тождество . Логарифмируем обе части тождества по основанию c. Получаем:

Доказательство [показать]

Логарифмируем левую и правую части по основанию c :

Левая часть:

Правая часть:

Равенство выражений очевидно. Т. к. логарифмы равны, то в силу монотонности логарифмической функции равны и сами выражения.

Натуральные логарифмы

Для производной натурального логарифма справедлива простая формула:

По этой причине в математических исследованиях преимущественно используют именно натуральные логарифмы. Они нередко появляются при решении дифференциальных уравнений, исследовании статистических зависимостей (например, распределения простых чисел) и т. п.

При справедливо равенство

Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа.

Связь с десятичным логарифмом: .

Десятичные логарифмы

Рис. 2. Логарифмическая шкала

Логарифмы по основанию 10 (обозначение: lg a ) до изобретения калькуляторов широко применялись для вычислений. Неравномерная шкала десятичных логарифмов обычно наносится и на логарифмические линейки . Подобная шкала широко используется в различных областях науки, например:

    Физика - интенсивность звука (децибелы ).

    Астрономия - шкала яркости звёзд .

    Химия - активность водородных ионов (pH ).

    Сейсмология - шкала Рихтера .

    Теория музыки - нотная шкала, по отношению к частотам нотных звуков.

    История - логарифмическая шкала времени .

Логарифмическая шкала также широко применяется для выявления показателя степени в степенных зависимостях и коэффициента в показателе экспоненты. При этом график, построенный в логарифмическом масштабе по одной или двум осям, принимает вид прямой, более простой для исследования.

Логарифмическая функция

Логарифмической функцией называется функция вида f (x ) = log a x , определённая при

Исследование логарифмической функции

Область определения:

Область значения:

График любой логарифмической функции проходит через точку (1;0)

Производная логарифмической функции равна:

Доказательство [показать]

I. Докажем, что

Запишем тождество e ln x = x и продифференцируем его левую и правую части

Получаем, что , откуда следует, что

II. Докажем, что

Функция являются строго возрастающей при a > 1 и строго убывающей при 0 a

Прямая x = 0 является левой вертикальной асимптотой , поскольку при a > 1 и при 0 a

Комплексный логарифм

Многозначная функция

Для комплексных чисел логарифм определяется так же, как вещественный. Начнём с натурального логарифма, который обозначим и определим как множество всех комплексных чисел z таких, что e z = w . Комплексный логарифм существует для любого , и его вещественная часть определяется однозначно, в то время как мнимая имеет бесконечное множество значений. По этой причине его называют многозначной функцией. Если представить w в показательной форме:

то логарифм находится по формуле:

Здесь - вещественный логарифм, r = | w | , k - произвольное целое число . Значение, получаемое при k = 0, называется главным значением комплексного натурального логарифма; принято брать в нём значение аргумента в интервале (− π,π]. Соответствующая (уже однозначная) функция называется главной ветвью логарифма и обозначается . Иногда через также обозначают значение логарифма, лежащее не на главной ветви.

Из формулы следует:

    Вещественная часть логарифма определяется по формуле:

    Логарифм отрицательного числа находится по формуле:

Примеры (приведено главное значение логарифма):

Аналогично рассматриваются комплексные логарифмы с другим основанием. Следует, однако, быть осторожным при преобразованиях комплексных логарифмов, принимая во внимание, что они многозначны, и поэтому из равенства логарифмов каких-либо выражений не следует равенство этих выражений. Пример ошибочного рассуждения:

i π = ln(− 1) = ln((− i ) 2) = 2ln(− i ) = 2(− i π / 2) = − i π - явная нелепость.

Отметим, что слева стоит главное значение логарифма, а справа - значение из нижележащей ветви (k = − 1). Причина ошибки - неосторожное использования свойства , которое, вообще говоря, подразумевает в комплексном случае весь бесконечный набор значений логарифма, а не только главное значение.

Риманова поверхность

Комплексная логарифмическая функция - пример римановой поверхности ; её мнимая часть (рис. 3) состоит из бесконечного числа ветвей, закрученных наподобие спирали. Эта поверхность односвязна ; её единственный нуль (первого порядка) получается при z = 1, особые точки: z = 0 и (точки разветвления бесконечного порядка).

Риманова поверхность логарифма является универсальной накрывающей для комплексной плоскости без точки 0.

Исторический очерк

Вещественный логарифм

Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание. Первым эту идею опубликовал в своей книге «Arithmetica integra » Михаэль Штифель , который, впрочем, не приложил серьёзных усилий для реализации своей идеи.

В 1614 году шотландский математик-любитель Джон Непер опубликовал на латинском языке сочинение под названием «Описание удивительной таблицы логарифмов ». В нём было краткое описание логарифмов и их свойств, а также 8-значные таблицы логарифмов синусов , косинусов и тангенсов , с шагом 1". Термин логарифм , предложенный Непером, утвердился в науке.

Понятия функции тогда ещё не было, и Непер определил логарифм кинематически , сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = -dy/M , где M - масштабный множитель, введённый для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000.

Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом. Если обозначить его функцию LogNap(x), то она связана с натуральным логарифмом следующим образом:

Очевидно, LogNap(M) = 0, то есть логарифм «полного синуса» есть нуль - этого и добивался Непер своим определением. LogNap(0) = ∞.

Основное свойство логарифма Непера: если величины образуют геометрическую прогрессию , то их логарифмы образуют прогрессию арифметическую . Однако правила логарифмирования для неперовой функции отличались от правил для современного логарифма.

Например, LogNap(ab) = LogNap(a) + LogNap(b) - LogNap(1) .

К сожалению, все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера .

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку , до появления карманных калькуляторов - незаменимый инструмент инженера.

Близкое к современному понимание логарифмирования - как операции, обратной возведению в степень - впервые появилось у Валлиса и Иоганна Бернулли , а окончательно было узаконено Эйлером в XVIII веке . В книге «Введение в анализ бесконечных» (1748 ) Эйлер дал современные определения как показательной , так и логарифмической функций, привёл разложение их в степенные ряды, особо отметил роль натурального логарифма.

Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

Комплексный логарифм

Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII-XVIII веков Лейбниц и Иоганн Бернулли , однако создать целостную теорию им не удалось - в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века - между Даламбером и Эйлером. Бернулли и Даламбер считали, что следует определить log(-x) = log(x) . Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747-1751 годах и по существу ничем не отличается от современной.

Хотя спор продолжался (Даламбер отстаивал свою точку зрения и подробно аргументировал её в статье своей «Энциклопедии» и в других трудах), однако точка зрения Эйлера быстро получила всеобщее признание.

Логарифмические таблицы

Логарифмические таблицы

Из свойств логарифма следует, что вместо трудоёмкого умножения многозначных чисел достаточно найти (по таблицам) и сложить их логарифмы, а потом по тем же таблицам выполнить потенцирование , то есть найти значение результата по его логарифму. Выполнение деления отличается только тем, что логарифмы вычитаются. Лаплас говорил, что изобретение логарифмов «продлило жизнь астрономов», многократно ускорив процесс вычислений.

При переносе десятичной запятой в числе на n разрядов значение десятичного логарифма этого числа изменяется на n . Например, lg8314,63 = lg8,31463 + 3. Отсюда следует, что достаточно составить таблицу десятичных логарифмов для чисел в диапазоне от 1 до 10.

Первые таблицы логарифмов опубликовал Джон Непер (1614 ), и они содержали только логарифмы тригонометрических функций, причём с ошибками. Независимо от него свои таблицы опубликовал Иост Бюрги, друг Кеплера (1620 ). В 1617 году оксфордский профессор математики Генри Бригс опубликовал таблицы, которые уже включали десятичные логарифмы самих чисел, от 1 до 1000, с 8 (позже - с 14) знаками. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега (1783 ) появилось только в 1857 году в Берлине (таблицы Бремивера).

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого . В СССР выпускались несколько сборников таблиц логарифмов.

    Брадис В. М. Четырехзначные математические таблицы. 44-е издание, М., 1973.

Таблицы Брадиса (1921 ) использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали мантиссы десятичных логарифмов чисел и тригонометрических функций, натуральные логарифмы и некоторые другие полезные расчётные инструменты.

Литература

    Успенский Я. В. Очерк истории логарифмов. Петроград, 1923. −78 с.

    Выгодский М. Я. Справочник по элементарной математике . - М.: АСТ, 2003. - ISBN 5-17-009554-6

    История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука.

    Том 1 С древнейших времен до начала Нового времени. (1970)

    Том 2 Математика XVII столетия. (1970)

    Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров) . - М.: Наука, 1973.

    Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления, тома I, II. - М.: Наука, 1960.

12логарифму интенсивности действующего раздражителя (... XX в. впервые в истории психологии попытались экспериментально исследовать... выявление причин и специфических условий возникновения неврозов, выделение в особый...

Единственным способом реализации дальних путешествий было мореплавание, что всегда связано с выполнением больших объемов навигационных вычислений. Сейчас трудно представить процесс изнурительных расчетов при умножении-делении пяти-шестизначных чисел «вручную». богослов по роду своей основной деятельности, занимаясь на досуге тригонометрическими расчетами, догадался заменить трудоемкую процедуру умножения простым сложением. Он сам говорил, что его целью было «освободиться от трудности и скуки вычислений, которые отпугивают многих от изучения математики». Усилия увенчались успехом - был создан математический аппарат, названный системой логарифмов.

Итак, что такое логарифм? Основой логарифмических вычислений является иное представление числа: вместо обычной позиционной системы, как мы привыкли, число A представляется в виде степенного выражения, где некое произвольное число N, называемое основанием степени, возводится в такую степень n, что в результате получается число A. Таким образом, n - это логарифм числа А по основанию N. Выбор основания логарифмов определяет название системы. Для простых вичислений применяется десятичная система логарифмов, а в науке и технике широко используется система натуральных логарифмов, где основанием служит иррациональное число е=2,718. Выражение, определяющее логарифм числа А, на языке математики записывается так:

n=log(N)A, где N - основание степени.

Десятичный и натуральный логарифмы имеют свое специфичное сокращенное написание - lgA и lnA, соответственно.

В системе расчетов, использующей вычисление логарифмов, основным элементом является преобразование числа к степенному виду с помощью таблицы логарифмов по некоторому основанию, например 10. Эта манипуляция не представляет никаких сложностей. Далее используется свойство степенных чисел, состоящее в том, что при умножении их степени складываются. Практически это означает, что умножение чисел с логарифмическим представлением, заменяется сложением их степеней. Поэтому, вопрос «что такое логарифм», если его продолжить до «а зачем он нам нужен», имеет простой ответ - чтоб упростить процедуру умножения-деления многоразрядных чисел - ведь сложение «в столбик» значительно проще умножения «в столбик». Кто не верит - пусть попробует сложить и умножить два восьмиразрядных числа.

Первые таблицы логарифмов (по основанию с опубликовал в 1614 году Джон Непер, а полностью лишенный ошибок вариант, включающий и таблицы десятичных логарифмов, появился в 1857 году и известен как таблицы Бремикера. Использование логарифмов с основанием в виде обусловлено тем, что число е довольно просто получить через ряд Тейлора, имеющий широкое применение в интегральном и

Суть данной вычислительной системы содержится в ответе на вопрос «что такое логарифм» и вытекает из основного логарифмического тождества: N(основание логарифма) n, равную логарифму числа А(logA), равно этому числу A. При этом А>0, т.е. логарифм определяется только для положительных чисел, а основание логарифма всегда больше 0 и не равно 1. Исходя из сказанного, свойства натурального логарифма можно сформулировать следующим образом:

  1. Область определения натурального логарифма - вся числовая ось от 0 до бесконечности.
  2. ln x = 0 - следствие известного соотношения - любое число в нулевой степени равно 1.
  3. ln (X*Y) = ln X + lnY - наиболее важное для вычислительных манипуляций свойство - логарифм произведения двух чисел рамен сумме логарифмов каждого из них.
  4. ln (X/Y) = ln X - lnY - логарифм частного двух чисел равен разности логарифмов этих чисел.
  5. ln (X)n =n*ln X .
  6. Натуральный логарифм представляет собой дифференцируемую, выпуклую вверх функцию, причем ln’ X = 1 / X
  7. log (N)A =K* ln A - логарифм по любому положительному и отличному от числа е основанию отличается от натурального только коэффициентом.

Сейчас каждый школьник знает, что такое логарифм, но благодаря прогрессу в области прикладной вычислительной техники проблемы вычислительных работ ушли в прошлое. Тем не менее, логарифмы, уже как математический инструмент, используются при решении уравнений с неизвестными в показателе степени, в выражениях для нахождения времени

Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь — собственно, определение логарифма:

Логарифм по основанию a от аргумента x — это степень, в которую надо возвести число a , чтобы получить число x .

Обозначение: log a x = b , где a — основание, x — аргумент, b — собственно, чему равен логарифм.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log 2 64 = 6, поскольку 2 6 = 64.

Операцию нахождения логарифма числа по заданному основанию называют логарифмированием. Итак, дополним нашу таблицу новой строкой:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log 2 5. Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке . Потому что 2 2 < 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log 2 5, log 3 8, log 5 100.

Важно понимать, что логарифм — это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где — аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

Перед нами — не что иное как определение логарифма. Вспомните: логарифм — это степень , в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень — на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии — и никакой путаницы не возникает.

С определением разобрались — осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

  1. Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.
  2. Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b ⇒ x > 0, a > 0, a ≠ 1.

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log 2 0,5 = −1, т.к. 0,5 = 2 −1 .

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

  1. Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;
  2. Решить относительно переменной b уравнение: x = a b ;
  3. Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

Задача. Вычислите логарифм: log 5 25

  1. Представим основание и аргумент как степень пятерки: 5 = 5 1 ; 25 = 5 2 ;
  2. Составим и решим уравнение:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2;
  3. Получили ответ: 2.

Задача. Вычислите логарифм:

Задача. Вычислите логарифм: log 4 64

  1. Представим основание и аргумент как степень двойки: 4 = 2 2 ; 64 = 2 6 ;
  2. Составим и решим уравнение:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3;
  3. Получили ответ: 3.

Задача. Вычислите логарифм: log 16 1

  1. Представим основание и аргумент как степень двойки: 16 = 2 4 ; 1 = 2 0 ;
  2. Составим и решим уравнение:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0;
  3. Получили ответ: 0.

Задача. Вычислите логарифм: log 7 14

  1. Представим основание и аргумент как степень семерки: 7 = 7 1 ; 14 в виде степени семерки не представляется, поскольку 7 1 < 14 < 7 2 ;
  2. Из предыдущего пункта следует, что логарифм не считается;
  3. Ответ — без изменений: log 7 14.

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто — достаточно разложить его на простые множители. И если такие множители нельзя собрать в степени с одинаковыми показателями, то и исходное число не является точной степенью.

Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 — точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 — не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 — точная степень;
35 = 7 · 5 — снова не является точной степенью;
14 = 7 · 2 — опять не точная степень;

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

Десятичный логарифм от аргумента x — это логарифм по основанию 10, т.е. степень, в которую надо возвести число 10, чтобы получить число x . Обозначение: lg x .

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 — и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log 10 x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

Натуральный логарифм от аргумента x — это логарифм по основанию e , т.е. степень, в которую надо возвести число e , чтобы получить число x . Обозначение: ln x .

Многие спросят: что еще за число e ? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:
e = 2,718281828459...

Не будем углубляться, что это за число и зачем нужно. Просто помните, что e — основание натурального логарифма:
ln x = log e x

Таким образом, ln e = 1; ln e 2 = 2; ln e 16 = 16 — и т.д. С другой стороны, ln 2 — иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.

Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.