Вектор скорости и ускорения материальной точки и их модули. Пример решения задач

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора — вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами — единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? «Наверное какой-то жуткий», подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y , чтобы вместо синуса подставить в нее формулу изменения x :

В итоге жуткий закон движения точки оказался обычной параболой , ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

Всем известно, что скорость материальной точки — это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам . В итоге вектор скорости будет иметь следующий вид:

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора — это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике . А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

Скорость - векторная величина, характеризующая не только быстроту передвижения частицы по траектории, но и направление, в котором движется частица в каждый момент времени.

Средняя скорость за время от t 1 до t 2 равна отношению перемещения за это время к промежутку времени , за которое это перемещение имело место:

Тот факт, что это именно средняя скорость мы будем отмечать, заключая среднюю величину в угловые скобки: <...> , как это сделано выше.

Приведенная выше формула для среднего вектора скорости есть прямое следствие общего математического определения среднего значения <f(x) > произвольной функции f(x) на промежутке [a,b ]:

Действительно

Средняя скорость может оказаться слишком грубой характеристикой движения. Например, средняя скорость за период колебаний всегда равна нулю, в независимости от характера этих колебаний , по той простой причине, что за период - по определению периода - колеблющееся тело вернется в исходную точку и, следовательно, перемещение за период всегда равно нулю. По этой и ряду других причин, вводится мгновенная скорость - скорость в данный момент времени. В дальнейшем, подразумевая мгновенную скорость, будем писать просто: «скорость», опуская слова «мгновенная» или «в данный момент времени» всегда, когда это не может привести к недоразумениям.Для получения скорости в момент времени t надо сделать очевидную вещь: вычислить предел отношения при стремлении промежутка времени t 2 – t 1 к нулю. Сделаем переобозначения: t 1 = t и t 2 = t + и перепишем верхнее соотношение в виде:

Скорость в момент времени t равна пределу отношения перемещения за время к промежутку времени, за которое это перемещение имело место, при стремлении последнего к нулю

Рис. 2.5. К определению мгновенной скорости.

В данный момент мы не рассматриваем вопрос о существовании этого предела, предполагая, что он существует. Отметим, что если и есть конечное перемещение и конечный промежуток времени, то и - их предельные величины: бесконечно малое перемещение и бесконечно малый промежуток времени. Так что правая часть определения скорости

есть ничто иное как дробь - частное от деления на , поэтому последнее соотношение может быть переписано и весьма часто используется в виде

По геометрическому смыслу производной, вектор скорости в каждой точке траектории направлен по касательной к траектории в этой точке в её сторону движения.

Видео 2.1. Вектор скорости направлен по касательной к траектории. Эксперимент с точилом.

Любой вектор можно разложить по базису (для единичных векторов базиса, другими словами, единичных векторов, определяющих положительные направления осей OX ,OY ,OZ используем обозначения , , или , соответственно). Коэффициентами такого разложении являются проекции вектора на соответствующие оси. Важно следующее: в алгебре векторов доказано, что разложение по базису единственно. Разложим по базису радиус-вектор некоторой движущейся материальной точки

Учитывая постоянство декартовых единичных векторов , , , продифференцируем это выражение по времени

С другой стороны, разложение по базису вектора скорости имеет вид

опоставление двух последних выражений, с учетом единственности разложения любого вектора по базису, дает следующий результат: проекции вектора скорости на декартовы оси равны производным по времени от соответствующих координат, то есть

Модуль вектора скорости равен

Получим ещё одно, важное, выражение для модуля вектора скорости.

Уже отмечалось, что при величина || все меньше и меньше отличается от соответствующего пути (см. рис. 2). Поэтому

и в пределе (>0)

Иными словами, модуль скорости - это производная пройденного пути по времени.

Окончательно имеем:

Средний модуль вектора скорости , определяется следующим образом:

Среднее значение модуля вектора скорости равно отношению пройденного пути ко времени, в течение которого этот путь был пройден:

Здесь s(t 1 , t 2) - путь за время от t 1 до t 2 и, соответственно, s(t 0 , t 2) - путь за время от t 0 до t 2 и s(t 0 , t 2) - путь за время от t 0 до t 1 .

Средний вектор скорости или просто средняя скорость, как указано выше, равен

Отметим, что прежде всего, это вектор, его модуль - модуль среднего вектора скорости не следует путать со средним значением модуля вектора скорости. В общем случае они не равны: модуль среднего вектора вовсе не равен среднему модулю этого вектора . Две операции: вычисление модуля и вычисление среднего, в общем случае, переставлять местами нельзя.

Рассмотрим пример. Пусть точка движется в одну сторону. На рис. 2.6. показан график пройденного ею пути s в от времени (за время от 0 до t ). Используя физический смысл скорости, найти с помощью этого графика момент времени , в который мгновенная скорость равна средней путевой скорости за первые секунд движения точки.

Рис. 2.6. Определение мгновенной и средней скорости тела

Модуль скорости в данный момент времени

будучи производной пути по времени, равен угловому коэффициенту качательной к графику зависисмости точке соответствующей моменту времени t* . Средний модуль скорости за промежуток времени от 0 до t* есть угловой коэффициент секущей, проходящей через точки того же графика, соответствующие началу t = 0 и концу t = t* временного интервала. Нам надо найти такой момент времени t* , когда оба угловых коэффициента совпадают. Для этого через начало координат проводим прямую, касательную к траектории. Как видно из рисунка точка касания этой прямой графика s(t) и дает t* . В нашем примере получается

Пятиминутка: Закон движения точки задан уравнениями

x=2м/с*t; y=2м/с*t-1м/с 2 *t 2

Найти координаты точки для моментов времени 0, 0.5с, 1с, 1.5с, 2с. Отметить положение точки в системе координат X-Y, провести траекторию, определить скорость точки (|v|) как функцию времени.

Из формулы (1.3) вытекает, что скорость любого движения можно представить как результат сложения скоростей трех прямолинейных движений вдоль координатных осей X,Y и Z ,т.е. любое сложное движение можно представить как сумму прямолинейных движений (принцип суперпозиции движений). Используя данный принцип, определим, к примеру, величину первой космической скорости, т.е. такой скорости, параллельной земной поверхности, которую должно иметь тело, чтобы оно никогда не упало на Землю. Задача может быть решена следующим образом. Движение тела вдоль земной поверхности можно представить, как сумму двух движений: равномерного горизонтального движения со скоростью бросания v и свободного падения тела к поверхности Земли с ускорением g (ускорением свободного падения).

За малый промежуток времени Dt тело пройдет, двигаясь перпендикулярно земному радиусу, из точки А в точку В. (см.рис.1.9). При этом его радиус-вектор повернется на некоторый малый угол β. За это же за время, скорость тела получит приращение ∆v=g∆t вдоль земного радиуса, т.е. вектор скорости также повернется на некоторый угол. Для того, чтобы тело продолжало двигаться вдоль земной поверхности этот угол должен совпасть с углом поворота радиус-вектора тела. Следовательно, угол поворота вектора скорости - это также угол β. Приравняем тангенс β, найденный из треугольника перемещения и треугольника скорости:

(1.7)

После этого выразим величину скорости:

Как видно из вывода выражения для первой космической скорости, любое тело, двигаясь с этой скоростью вокруг Земли, изменяет направление скорости за счет постоянного падения на землю. и это изменение приводит к тому, что вектор скорости оказывается всегда параллелен земной поверхности.

Движение с неизменным вектором скорости называется равномерным. В общем случае скорость изменяется как по величине, так и по направлению.

Для характеристики быстроты изменения скорости вводится понятиеускорения. Ускорением называется отношение приращения скорости за бесконечно малый интервал времени к этому интервалу, т.е. производная от скорости по времени

Вектор ускорения можно также разложить по координатным осям:

Модуль вектора ускорения равен:

. (1.11)

Подставив в (1.9) выражение скорости как производную от радиус-вектора тела, получим выражение ускорения в виде второй производной от радиус-вектора по времени:

Пример . Радиус-вектор движущейся точки задан следующим выражением:

Определить характер движения, скорость и ускорение.

Для определения характера движения вычислим модуль радиус-вектора:

Таким образом, при движении точки |r|-const. Можно заключить, что это движение по окружности радиуса R с центром в начале координат.

Вычислим скорость движения точки:

Модуль скорости:

Модуль скорости также не изменяется во времени, следовательно, - это движение по окружности с постоянной по модулю скоростью.

Определим ускорение точки:

Сравнив формулы для радиус-вектора точки и ее ускорения, видим, что они выражают противоположно направленные векторы. Если радиус-вектор направлен из центра траектории к точке, то вектор ускорения направлен от точки в центр траектории. При этом модуль ускорения не изменяется во времени и равен |a|=Rω 2 . Вычислим скалярное произведение векторов скорости и ускорения:

Следовательно, в данном примере векторы скорости и ускорения перпендикулярны друг другу.

В общем случае векторы скорости и ускорения образуют какой-то угол. При этом удобно разложить вектор ускорения на две составляющие. Одна из них - параллельна (или антипараллельна) вектору скорости и называется тангенциальной составляющей ускорения. Другая - перпендикулярна вектору скорости, она называется нормальной составляющей ускорения. Тангенциальная составляющая ускорения выражает изменение модуля скорости, а нормальная составляющая - изменение направления скорости. В рассмотренном выше примере тангенциальная составляющего ускорения равна нулю. Вследствие этого скорость изменяется только по направлению, модуль ее остается неизменным.

В общем случае модуль полного ускорения определяется по теореме Пифагора:

1.3. Кинематика вращательного движения, вектор угловой скорости, связь линейно и угловой скорости точки, вектор углового ускорения .

Движение по окружности является частным, но весьма распространенным типом движения. Для него вводятся такие дополнительные кинематические характеристики как угловая скорость - ω и угловое ускорение - ε .

Величина угловой скорости w определяется как отношение приращения угла - dj, на который повернется радиус-вектор точки за время dt, к этому интервалу времени т.е.

Это вполне естественное определение. Однако, согласно (1.18), и угол поворота и угловая скорость определились как векторные величины. В будущем мы увидим, что такое определение угловых величин оказывается очень удобным и продуктивным. Направление вектора угла поворота определяется правилом правого винта: если правый винт поворачивать в направлении положительного приращения угла, то поступательное движение винта укажет направление вектора приращения угла .

Похожее определение уже встречалось сегодня при определении векторного произведения. Действительно, если выразить приращение радиус-вектора точки, движущейся по окружности, при ее повороте на угол ∆φ, то получим следующую формулу

(1.19)

Вектор линейной скорости при движении точки по окружности с угловой скорость ω определится на основе (1.19)

> Средняя векторная скорость: графическая интерпретация

Средняя скорость по векторной величине: определение, как найти среднюю скорость движения тела, единица измерения векторной скорости, формула и вычисление.

Средняя векторная скорость – изменение положения во время движения.

Задача обучения

  • Разобраться в постоянной скорости и физической.

Основные пункты

  • Средняя скорость высчитывается через определение общего перемещения, поделенного на время движения.
  • Средняя скорость ничего не говорит о том, что происходит с объектом между двумя точками.
  • Средняя векторная скорость отличается от скалярной тем, что учитывает направление движения и общее изменение положения.

Термин

Векторная скорость – величина, обозначающая скорость изменения положения по времени или направлении.

Если говорить о быте, то векторную и скалярную скорость именуют просто скоростью и не делают никаких отличий. Но в физике они явно заметны. Скалярная скорость обладает лишь величиной, а векторная средняя скорость добавляет к величине направление.

Средняя скалярная скорость высчитывается как дистанция, пройденная за общее время движения. А векторная – изменение положения в течении всего времени перемещения.

Vсредняя = Δx/t

Единицей СИ скорости выступает м/с, но могут быть и км/ч, миль/ч, см/с. Допустим, что пассажир в поезде потратил 5 с, чтобы сместиться на -4м (отрицательный знак указывает на движение назад). Тогда средняя векторная скорость:

V = Δx/t = -4м/5с = -0.8 м/с.

Однако эти данные ничего не говорят о том, что случилось с объектом между двумя точками. У нас не получится выяснить, остановился он или же вернулся обратно. Чтобы узнать детали, придется вникать в меньшие временные промежутки.

Давайте рассмотрим еще один пример, чтобы провести четкую границу между векторной и скалярной скоростями. Допустим вы очутились в маленьком прямоугольнике. Вы движетесь на 3 м севернее, 4 м восточнее, 3 м южнее и на 4 м западнее. На все это ушло полминуты. Вычисление скалярной начнется с охвата полной дистанции (3 + 4 + 3 + 4 = 14 м), а отсюда – 14/30 = 0.47 м/с.

Однако векторная реагирует на смещение с течением времени. Вы вернулись на стартовую точку, поэтому смещение = 0. Поэтому средняя векторная скорость – 0 м/с.

(1 оценок, среднее: 5,00 из 5)

Основываясь на определении скорости, мы можем утверждать, что скорость является вектором. Она непосредственно выражается через вектор-перемещения, отнесенный к промежутку времени, и должна обладать всеми свойствами вектора перемещения.

Направление вектора скорости, так же как направление физически малого вектора перемещения, определяется по чертежу траектории. В этом можно наглядно убедиться на простых примерах.

Если к вращающемуся точильному камню прикоснуться железной пластинкой, то снимаемые им опилки приобретут скорость тех точек камня, к которым прикасалась пластинка, и затем улетят в направлении вектора этой скорости. Все точки камня движутся по окружностям. Во время опыта хорошо видно, что отрывающиеся раскаленные частички-опилки уходят по касательным к этим окружностям, указывая направления векторов скоростей отдельных точек вращающегося точильного камня.

Обратите внимание на то, как расположены выходные трубы у кожуха центробежного водяного насоса или у сепаратора для молока. В этих машинах частицы жидкости заставляют двигаться по окружностям и затем дают им возможность выйти в отверстие, расположенное в направлении вектора той скорости, которую они имеют в момент выхода. Направление вектора скорости в этот момент совпадает с направлением касательной к траектории движения частиц жидкости. И выходная труба тоже направлена по этой касательной.

Точно так же обеспечивают выход частиц в современных ускорителях электронов и протонов при ядерных исследованиях.

Итак, мы убедились, что направление вектора скорости определяется по траектории движения тела. Вектор скорости всегда направлен вдоль касательной к траектории в той точке, через которую проходит движущееся тело.

Для того чтобы определить, в какую сторону вдоль касательной направлен вектор скорости и каков его модуль, нужно обратиться к закону движения. Допустим, что закон движения задан графиком, показанным на рис. 1.54. Возьмем приращение длины пути соответствующее малому вектору по которому определяется вектор скорости. Вспомним, что Знак указывает

направление движения по траектории, а следовательно, определяет ориентировку вектора скорости вдоль касательной. Очевидно, что через модуль этого приращения длины пути будет определяться модуль скорости.

Таким образом, модуль вектора скорости и ориентировку вектора скорости вдоль касательной к траектории можно определить из соотношения

Здесь является алгебраической величиной, знак которой указывает, в какую сторону по касательной к траектории направлен вектор скорости.

Итак, мы убедились, что модуль вектора скорости может быть найден по графику закона движения. Отношение определяет угол наклона а касательной на этом графике. Наклон касательной на графике закона движения будет тем больше, чем больше т. е. чем больше в выбранный момент скорость движения.

Еще раз обратим внимание на то, что для полного определения скорости требуется одновременное знание траектории и закона движения. Чертеж траектории позволяет определить направление скорости, а график закона движения - ее модуль и знак.

Если теперь мы обратимся снова к определению механического движения, то убедимся в том, что после введения понятия скорости для полного описания любого движения больше ничего не требуется. Используя понятия радиус-вектора, вектора перемещения, вектора скорости, длины пути, траектории и закона движения, можно получить ответы на все вопросы, связанные с определением особенностей любого движения. Все эти понятия взаимосвязаны друг с другом, причем знание траектории и закона движения позволяет найти любую из этих величин.