Основные функции ядра в клетке состоят в. Структурная организация и функции ядрышка Где находится ядрышко в клетке

ЯДРЫШКО (nucleolus) - составная часть ядра клетки, представляющая собой оптически плотное, сильно преломляющее свет тельце. В современной цитологии (см.) ядрышко признается местом синтеза и накопления всех рибосомных РНК (рРНК), кроме 5S-PHK (см. Рибосомы).

Ядрышко впервые описано в 1838- 1839 годы М. Шлейденом в растительных и Т. Шванном - в животных клетках.

Число ядрышек, их размеры и форма варьируют в зависимости от вида клеток. Наиболее часто встречаются ядрышки сферической формы. Ядрышка способны сливаться друг с другом, поэтому в ядре могут присутствовать либо несколько мелких ядрышек, либо одно крупное, либо несколько ядрышек разной величины. В клетках с низким уровнем синтеза белка ядрышки невелики или не выявляются. Активизация синтеза белков сопряжена с увеличением общего объема ядрышек. Во многих случаях общий объем ядрышек также коррелирует с числом хромосомных наборов клетки (см. Хромосомный набор).

Ядрышко не имеет оболочки и окружено слоем конденсированного хроматина (см.) - так называемого околоядрышкового, или перинуклеолярного, гетерохроматина. С помощью цитохимических методов в ядрышках выявляют РНК и белки, кислые и основные. Белки ядрышка включают ферменты, участвующие в синтезе рибосомных РНК. При окраске препаратов ядрышка, как правило, прокрашиваются основным красителем. В яйцеклетках некоторых червей, моллюсков и членистоногих встречаются сложные ядрышки (амфинуклеолы), состоящие из двух частей, одна из которых окрашивается основным красителем, другая (белковое тельце) - кислым. При прекращении синтеза рРНК в начале митоза (см.) ядрышка исчезают (исключение составляют ядрышко некоторых простейших), а при восстановлении синтеза рРНК в телофазе митоза формируются вновь на участках хромосом (см.), называемых организаторами ядрышка. В клетках человека организаторы ядрышка локализованы в области вторичных перетяжек коротких плеч хромосом 13, 14, 15, 21 и 22. При активном синтезе белка клеткой организаторы ядрышка обычно редуплицируются, и количество их достигает нескольких сотен копий. В ооцитах животных (например, амфибий) такие копии могут отрываться от хромосом и формировать множественные краевые ядрышки яйцеклеток.

Организаторы ядрышка состоят из повторяющихся блоков транскрибируемых последовательностей ДНК, включающих гены 5,8S-PHK, 28S-РНК и 18S-pPHK, разделенные двумя некодирующими рРНК участками. Транскрибируемые последовательности ДНК чередуются с нет-ранскрибируемыми последовательностями (спейсерами). Синтез рРНК, или транскрипция (см.), осуществляется специальным ферментом - РНК-полимеразой I. Первоначально синтезируются гигантские молекулы 45S-PHK; в ходе созревания (процессинга) из этих молекул с помощью специальных ферментов образуются все три вида рРНК; этот процесс протекает в несколько этапов. Избыточные, не входящие в состав рРНК участки 45S-PHK распадаются в ядре, а зрелые рРНК транспортируются в цитоплазму, где молекулы 5,8S-рРНК и 28S-pPHK вместе с синтезированной в ядре вне ядрышка молекулой 5S-pPHK и дополнительными белками формируют большую единицу рибосомы, а молекула 18S-pPHK входит в состав ее малой субъединицы. Согласно современным представлениям рР НК и их предшественники на всех этапах процессинга присутствуют в ядре в виде комплексов с белками - рибонуклеопротеидов. Присоединение белков к молекуле 45 S-РНК происходит по мере ее синтеза, так что к моменту завершения синтеза молекула уже представляет собой рибонуклеопротеид.

Ультраструктура ядрышка отражает последовательные этапы синтеза рРНК на матрицах организаторов ядрышка. На электронограммах в ядрышках различают фибриллярный компонент (нуклеолонему), гранулярный компонент и аморфный матрикс (рис.). Нуклеолонема представляет собой нитчатую структуру толщиной 150- 200 нм; она состоит из гранул диаметром около 15 нм и рыхло расположенных фибрилл толщиной 4-8 нм. На срезах нуклеолонемы видны относительно светлые участки - так назывыаемые фибриллярные центры. Предполагают, что эти центры образованы нетранскрибируемыми областями ДНК организаторов ядрышка, находящимися в комплексе с аргенто-фильными белками. Фибриллярные центры окружены петлями транскрибируемых цепей ДНК с синтезирующимися на них рибонуклеопротеидами 45S-PHK. Видимо, последние и выявляются на электронограммах в виде фибрилл.

Гранулярный компонент ядрышка содержит гранулы рибонуклеопротеидов, представляющие собой различные продукты процессинга рРНК. Среди них иногда удается различить темные гранулы рибонуклеопротеидного предшественника 28S-pPHK (32S-pPHK) и более светлые зерна, содержащие зрелую 28S-pPHK. Аморфный матрикс ядрышка практически не отличается от ядерного сока (см. Ядро клетки).

Таким образом, ядрышко представляет собой динамичную, постоянно обновляющуюся структуру. Это зона ядра клетки, где синтезируются и созревают рРНК и откуда они транспортируются в цитоплазму.

Пути выхода рибонуклеопротеидов из ядрышка в цитоплазму изучены недостаточно. Считают, что они проходят через поросомы ядерной оболочки (см. Ядро клетки) или через участки ее локального разрушения. Связи ядрышка с оболочкой ядра в клетках разных типов осуществляются как в виде непосредственных контактов, так и с помощью каналов, образующихся вследствие инвагинации оболочки ядра. Через подобные связи происходит также обмен веществ между ядрышками и цитоплазмой.

При патологических процессах отмечают разнообразные изменения ядрышек. Так, при малигнизации клеток наблюдается увеличение числа и размеров ядрышек, при выраженных дистрофических процессах в клетке - так называемая сегрегация ядрышек. При сегрегации происходит перераспределение гранулярного и фибриллярного компонентов. При выраженной сегрегации ядрышек нуклеолонема может исчезать, а в гранулярном компоненте образуются темная и светлая зоны - так называемые шапочки, или кэпы. Эти структурные изменения отражают нарушения синтеза, процесса созревания и внутриядрышкового транспорта рРНК.

Библиогр.: Заварзин А. А. и Харазова А. Д. Основы общей цитологии, с. 183, Д., 1982; Ченцов Ю. С. Общая цитология, М., 1984; Ченцов Ю. С. и Поляков В. Ю, Ультраструктура клеточного ядра, с. 50, М., 1974; В о u t e i 1 1 e М. a. D и-puy-Go in А. М. 3-dimensional analysis of the interphase nucleus, Biol. Cell, v. 45, p. 455, 1982; Busch H. a. Smetana K. The nucleolus, N. Y.- L., 1970; Hadjiolov A. A. The nucleolus and ribosome biogenesis, Wien - N. Y., 1985, bibliogr.

Клетка является элементарной единицей живых организмов на Земле и имеет сложную химическую организацию структур, называемых органеллами. К ним относится ядрышко, строение и функции которого мы изучим в данной статье.

Особенности эукариотических ядер

Ядросодержащие клетки в своем составе содержат немембранные органеллы округлой формы, более плотные, чем кариоплазма, и называемые ядрышками или нуклеолами. Они были обнаружены ещё в 19 веке. Сейчас нуклеолы достаточно полно изучены благодаря электронной микроскопии. Практически до 50-х годов 20 века функции ядрышек не были определены, и ученые рассматривали эту органеллу, скорее, как резервуар запасных веществ, используемых во время митоза.

Современными исследованиями установлено, что органоид включает в себя гранулы нуклеопротеидной природы. Более того, биохимические опыты подтвердили, что органелла содержит большое количество белков. Именно они и обуславливают её высокую плотность. Кроме протеидов, в составе ядрышек присутствует РНК и небольшое количество ДНК.

Клеточный цикл

Интересно, что в жизни клетки, которая состоит из периода покоя (интерфазы) и деления (мейоза - у половых, митоза - у ядрышки сохраняются непостоянно. Так, в интерфазе ядро с ядрышком, функции которых - сохранение генома и образование белоксинтезирующих органелл, присутствуют обязательно. В начале клеточного деления, а именно в профазе, они исчезают и заново образуются лишь в конце телофазы, сохраняясь в клетке до следующего деления или до апоптоза - её гибели.

Ядрышковый организатор

В 30-х годах прошлого века учеными было установлено, что образование ядрышек контролируется определенными участками некоторых хромосом. Они содержат гены, хранящие информацию о том, какое строение и каковы функции ядрышка в клетке. Существует корреляция между количеством ядрышковых организаторов и самих органелл. Например, содержит в своем кариотипе две ядрышкообразующие хромосомы и, соответственно, в ядрах её соматических клеток находится две нуклеолы.

Так как функции ядрышка, а также его наличие тесно связаны с и образованием рибосом, сами органеллы отсутствуют в высокоспециализированных тканях головного мозга, крови, а также в бластомерах дробящейся зиготы.

Амплификация нуклеол

В синтетической стадии интерфазы наряду с самоудвоением ДНК происходит избыточная репликация числа генов рРНК. Так как основные функции ядрышка - продуцирование рибосом, то в связи со сверхсинтезом локусов ДНК, несущих информацию о РНК, резко возрастает количество этих органелл. Нуклеопротеиды, не связанные с хромосомами, начинают функционировать автономно. Как результат - в ядре образуется множество нуклеол, дистанцирующихся от ядрышкообразующих хромосом. Это явление называется амплификацией генов рРНК. Продолжая изучать функции ядрышка в клетке, отметим, что наиболее активный их синтез происходит в профазе редукционного деления мейоза, вследствие чего овоциты первого порядка могут содержать несколько сотен ядрышек.

Биологическое значение этого явления становится понятным, если учесть, что на ранних этапах эмбриогенеза: дроблении и бластуляции, необходимо огромное количество рибосом, синтезирующих главный строительный материал - белок. Амплификация - достаточно распространенный процесс, он происходит в овогенезе растений, насекомых, земноводных, дрожжей, а также у некоторых протист.

Гистохимический состав органеллы

Продолжим изучение и их структур, и рассмотрим ядрышко, строение и функции которого взаимосвязаны. Установлено, что оно содержит три вида элементов:

  1. Нуклеонемы (нитевидные образования). Они неоднородны и содержат фибриллы и глыбки. Входя в состав как растительных, так и нуклеонемы образуют фибриллярные центры. Цитохимическое строение и функции ядрышка зависят также от присутствия в нем матрикса - сети опорных белковых молекул третичной структуры.
  2. Вакуоли (светлые участки).
  3. Зернистые гранулы (нуклеолины).

С точки зрения химического анализа, этот органоид почти полностью состоит из РНК и белка, а ДНК находится только на его периферии, образуя кольцеобразную структуру - околоядрышковый хроматин.

Итак, мы установили, что в состав ядрышка входят пять образований: фибриллярный и гранулярный центры, хроматин, белковый ретикулум и плотный фибриллярный компонент.

Виды ядрышек

Биохимическое строение этих органоидов зависит от в которых они присутствуют, а также от особенностей их метаболизма. Различают 5 основных структурных типов нуклеол. Первый - ретикулярный, наиболее распространен и характеризуется изобилием плотного фибриллярного материала, глыбок нуклеопротеидов и нуклеонем. Процесс переписывания информации с ядрышковых организаторов происходит очень активно, поэтому фибриллярные центры плохо видны в поле зрения микроскопа.

Так как главные функции ядрышка в клетке - синтез рибосомных субъединиц, из которых образуются белоксинтезирующие органеллы, то ретикулярный тип организации присущ как растительным, так и животным клеткам. Кольцевидный тип ядрышек встречается в клетках соединительной ткани: лимфоцитах и эндотелиоцитах, у которых гены рРНК практически не транскрибируются. Остаточные ядрышки встречаются в клетках, полностью утративших способность к транскрипции, например, у нормобластов и энтероцитов.

Сегрегированный вид присущ клеткам, испытавшим интоксикацию канцерогенами, антибиотиками. И, наконец, компактный тип ядрышка характеризуется множеством фибриллярных центров и небольшим количеством нуклеонем.

Белковый ядрышковый матрикс

Продолжим изучение внутреннего строения структур ядра и определим, каковы функции ядрышка в метаболизме клетки. Известно, что около 60% сухой массы этого органоида приходится на белки, входящие в состав хроматина, рибосомных частиц, а также на собственно ядрышковые белки. Остановимся на них подробнее. Часть протеидов задействована в процессинге - формировании зрелых рибосомных РНК. К ним относятся РНК-полимераза 1 и нуклеаза, которые удаляют лишние триплеты с концов молекулы рРНК. Белок фибрилларин находится в плотном фибриллярном компоненте и, так же, как и нуклеаза, осуществляет процессинг. Еще один белок - нуклеолин. Вместе с фибрилларином он находится в ПФК и ФЦ ядрышек и в ядрышковых организаторах хромосом профазы митоза.

Такой полипептид, как нуклеофозин располагается в гранулярной зоне и плотном фибриллярном компоненте, он участвует в формировании рибосом из 40 S и 60 S субъединиц.

Какую функцию выполняет ядрышко

Синтез рибосомной РНК - главное задание, которое должна выполнить нуклеола. В это время на её поверхности (а именно в фибриллярных центрах) происходит транскрипция при участии фермента РНК-полимеразы. На данном ядрышковом организаторе синтезируются сотни пре-рибосом, называемых рибонуклеопротеидными глобулами. Из них образуются рибосомные субъединицы, которые через покидают кариоплазму и оказываются в цитоплазме клетки. Малая субъединица 40S соединяется с информационной РНК и только после этого к ним прикрепляется большая субъединица 40S. Образуется зрелая рибосома, способная осуществлять трансляцию - синтез клеточных белков.

В данной статье нами было изучено строение и функции ядрышка в растительных и животных клетках.

С помощью светового микроскопа в ядре интерфазной клетки легче всего выявляется ядрышко . Многие детали его морфологии были изучены хорошо, но его функции и роль в клетке оставались неизвестными до 60-х г. Размер ядрышка может меняться не только в разных клетках одного организма, но и в одной клетке.
В растительной клетке, продуцирующей большое количество белков, ядрышко может составлять четверть объема всего ядра. В покоящихся клетках ядрышко очень мало. Размер и число ядрышек меняются в зависимости от фазы клеточного цикла. В начале деления клетки ядрышки уменьшаются в размерах, затем они исчезают совсем, появляясь к концу деления, при этом в ядре наблюдается несколько ядрышек.
После деления клетки число ядрышек уменьшается до одного, а его размер увеличивается. Функции ядрышка были выявлены с помощью метода меченых атомов, для чего использовали уридин, меченый тритием. Уридин - предшественник урацила, который входит в состав РНК.
Через различные промежутки времени, прошедшие со времени включения метки, клеточное содержимое фракционировали и выделяли ядрышки. Эксперименты показали, что ядрышко - это центр образования рибосом. В составе ядрышка были выявлены большие петли ДНК в составе хромосом, содержащие гены рибосомной РНК - ядрышковые организаторы. В клетках каждого вида существует не менее двух хромосом, имеющих в своем составе такие гены. Эти гены располагаются комплексами из нескольких идентичных копий - кластерами.
В клетках человека содержится около 200 копий гена рибосомальной РНК на гаплоидный геном, которые распределены кластерами по пяти хромосомам, соответственно в диплоидном наборе хромосом ядрышковых организоторов будет 10. Они расположены в виде серии повторяющихся последовательностей, расположенных одна за другой, тандемно.
Тандемные повторы разделены особым участком ДНК - спейсером, который не считывается вместе с рибосомальными генами. Большое количество генов, контролирующих синтез р-РНК, связано с тем, что эукариотическая клетка должна за короткое время синтезировать огромное количество молекул белка, и, следовательно, должна иметь большое число рибосом, примерно 10 млн на одну генерацию.

Электронная микроскопия показала, что ядрышко не имеет мембраны. Это высокоорганизованная структура внутри ядра. Оно содержит три дискретные зоны: слабоокрашенный компонент, гранулярный компонент и фибриллярный компонент. Эти зоны имеют непосредственное отношение к функциям ядрышка. Слабоокрашенный компонент содержит ДНК из области ядрышкового организатора хромосомы. Фибриллярный компонент состоит из множества фибрилл диаметром 5 нм, которые представляют собой молекулы РНК, считанные с ДНК ядрышковых организаторов в процессе транскрипции (РНК-транскрипты) . Гранулярный компонент ядрышка содержит частицы диаметром 15 нм, которые являются предшественниками рибосомных частиц. Радиоактивное мечение показало, что со времени введения метки до образования субъединиц рибосом проходит 30 мин, после чего эти субъединицы выходят из ядра. Сборка функционально зрелых рибосом происходит в цитоплазме клетки.

  • Ядрышко – сферическое образование (1-5 мкм в диаметре), присутствующее практически во всех живых клетках эукариотических организмов. В ядре видно одно или несколько обычно округлой формы телец сильно преломляющих свет, – это ядрышко, или нуклеола (nucleolus). Ядрышко хорошо воспринимает основные красители и располагается среди хроматина. Базофилия ядрышка определяется тем, что ядрышки богаты РНК. Ядрышко – самая плотная структура ядра – является производным хромосомы, одним из ее локусов с наиболее высокой концентрацией и активностью синтеза РНК в интерфазе. Образование ядрышек и их число связаны с активностью и числом определенных участков хромосом - ядрышковых организаторов, которые расположены большей частью в зонах вторичных перетяжек, оно не является самостоятельной структурой или органеллой. У человека такие участки есть в 13-й, 14-й, 15-й, 21-й и 22-й парах хромосом.

    Функция ядрышек – синтез рРНК и образование субъединиц рибосом.

    Ядрышко неоднородно по своему строению: в световом микроскопе можно видеть его тонковолокнистую организацию. В электронном микроскопе выявляются два основных компонента: гранулярный и фибриллярный. Диаметр гранул около 15-20нм, толщина фибрилл - 6-8нм. Гранулы представляют собой созревающие субъединицы рибосом.

    Гранулярный компонент локализуется в периферической части ядрышка и представляет собой скопление субъединиц рибосом.

    Фибриллярный компонент локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида предшественников рибосом.

    Ультраструктура ядрышек зависит от активности синтеза РНК: при высоком уровне синтеза рРНК в ядрышке выявляется большое число гранул, при прекращении синтеза количество гранул снижается, ядрышки превращаются в плотные фибриллярные тельца базофильной природы.

    Схему участия ядрышек в синтезе цитоплазматических белков можно представить следующим образом:

    Рисунок? – СХЕМА СИНТЕЗА РИБОСОМ В КЛЕТКАХ ЭУКАРИОТ

    Схема синтеза рибосом в клетках эукариот.
    1. Синтез мРНК рибосомных белков РНК полимеразой II. 2. Экспорт мРНК из ядра. 3. Узнавание мРНК рибосомой и 4. синтез рибосомных белков. 5. Синтез предшественника рРНК (45S - предшественник) РНК полимеразой I. 6. Синтез 5S pРНК РНК полимеразой III. 7. Сборка большой рибонуклеопротеидной частицы, включающей 45S-предшественник, импортированные из цитоплазмы рибосомные белки, а также специальные ядрышковые белки и РНК, принимающие участие в созревании рибосомных субчастиц. 8. Присоединение 5S рРНК, нарезание предшественника и отделение малой рибосомной субчастицы. 9. Дозревание большой субчастицы, высвобождение ядрышковых белков и РНК. 10. Выход рибосомных субчастиц из ядра. 11. Вовлечение их в трансляцию.



    Микрофотографии ядрышка (по данным электронной микроскопии)

    Рисунок? – Электронная микрофотография ядра с ядрышком

    1- Фибриллярный компонент; 2- гранулярный компонент; 3- околоядрышковый гетерохроматин; 4-кариоплазма; 5- ядерная мембрана.

    Рисунок? – РНК в цитоплазме и ядрышках клеток подчелюстной железы.

    Окраска по Браше, Х400

    1 цитоплазма; 2 ядрышки. Обе эти структуры богаты РНК (главным образом, за счет рРНК - свободной или в составе рибосом) и потому при окраске по Браше красятся в малиновый цвет.

    При световой микроскопии ядрышки в клетках с высоким уровнем белкового синтеза имеют довольно большие размеры и их легко рассмотреть.

    Если же ядрышки мелкие и в ядре преобладает гетерохроматин, то их поиск значительно затруднен. Ядрышко - это своеобразный центр ядра, его «штаб», где собираются рибосомы и, таким образом, контролируется степень последующих процессов трансляции белков в клетке.

    В ядре может быть от одного до нескольких ядрышек, но если ядрышек одно или два, то они более крупные. Они могут иметь различные размеры, форму, плотность и область распределения в зависимости от функциональной активности клетки. Более крупные ядрышки характерны для дифференцированных клеток с высокой активностью синтеза белков. Малодифференцированные клетки обычно имеют несколько мелких ядрышек. Клетки, в которых активность белкового синтеза невелика, имеют мелкие ядрышки с высокой электронной плотностью и интенсивно окрашивающиеся основными красителями.

    Основная функция ядрышка - синтез рРНК и субъединиц рибосом. При исследовании ультратонких срезов в электронном микроскопе видно, что ядрышки не гомогенные структуры, а имеют вид элекронно-плотного вещества, формирующего петли. Промежутки между петлями заполнены более светлым веществом. С помощью электронной микроскопии в ядрышке можно выявить несколько компонентов.

    Фибриллярный компонент - это тонкофибриллярная структура, состоящая из тончайших нитей различной электронной плотности. Она образована участками слабо конденсированной ДНК, считывающимися с нее молекулами РНК и белками, осуществляющими транскрипцию. Фибриллярный компонент занимает центральные, небольшие по размерам участки вокруг ядрышковых организаторов. В фибриллярном компоненте ядрышка происходит транскрипция рРНК.

    Гранулярный (зернистый) компонент - это образующиеся субъединицы рибосом.

    При большом увеличении электронного микроскопа в гранулярном компоненте видно множество гранул высокой электронной плотности. Располагается между фибриллярными структурами и по периферии ядрышка.

    Зону ядрышкового организатора иногда выявляют в центре фибриллярного компонента в виде светлого участка. Вокруг ядрышкового организатора в интерфазу образуется ядрышко. В период митоза зона ядрышкового организатора соответствует области вторичной перетяжки хромосомы.

    Зона неактивной ДНК вокруг ядрышка отличается высокой степенью конденсации в виде околоядрышкового гетерохроматина. Предположительно эти зоны являются частями хромосом, которые образуют ядрышко.

    Ядрышки значительно изменяются в различные стадии митоза. В конце профазы митоза они исчезают, а находящийся в ядрышках хроматин начинает конденсироваться. С конца профазы до середины телофазы митоза ядрышко содержит в себе только хроматин ядрышкового организатора, что указывает на его низкую активность. Затем этот хроматин деконденсируется и вокруг него формируется плотный фибриллярный материал, содержащий скопление рРНК. Рост ядрышка продолжается до конца телофазы за счет увеличения содержания фибриллярных структур, а затем вокруг них формируется гранулярный компонент. К концу телофазы строение ядрышка близко к таковому в интерфазном ядре, и проявляются признаки нарастающей синтетической активности с образованием новых рибосом.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

    Одноклассники

    Ядро клетки по своему строению относится к группе двухмембранных органоидов. Однако ядро настолько важно для жизнедеятельности эукариотической клетки, что обычно его рассматривают отдельно. Ядро клетки содержит хроматин (деспирализованные хромосомы), который отвечает за хранение и передачу наследственной информации.

    В строении ядра клетки выделяют следующие ключевые структуры:

    • ядерная оболочка, состоящая из внешней и внутренней мембраны,
    • ядерный матрикс - всё, что заключено внутри клеточного ядра,
    • кариоплазма (ядерный сок) - жидкое содержимое, подобное по составу гиалоплазме,
    • ядрышко,
    • хроматин.

    Кроме перечисленного в ядре содержатся различные вещества, субъединицы рибосом, РНК.

    Строение наружной мембраны ядра клетки сходно с эндоплазматической сетью. Часто внешняя мембрана просто переходит в ЭПС (последняя от нее как бы ответвляется, является ее выростом). С внешней стороны на ядре располагаются рибосомы.

    Внутренняя мембрана более прочная за счет выстилающей ее ламины. Кроме опорной функции к этой ядерной выстилке прикрепляется хроматин.

    Пространство между двумя ядерными мембранами называется перинуклеарным.

    Мембрана ядра клетки пронизана множеством пор, соединяющих цитоплазму с кариоплазмой. Однако по своему строению поры ядра клетки не просто отверстия в мембране. В них содержатся белковые структуры (поровый комплекс белков), отвечающий за избирательную транспортировку веществ и структур. Пассивно через пору могут проходить только малые молекулы (сахара, ионы).

    Какую функцию выполняет ядро клетки?

    Хроматин ядра клетки состоит их хроматиновых нитей. Каждая хроматиновая нить соответствует одной хромосоме, которая образуется из нее путем спирализации.

    Чем сильнее раскручена хромосома (превращена в хроматиновую нить), тем больше она задействована в процессах синтеза на ней. Одна и та же хромосома может быть в одних участках спирализована, а в других деспирализована.

    Каждая хроматиновая нить ядра клетки по строению является комплексом ДНК и различных белков, которые в том числе выполняют функцию скручивания и раскручивания хроматина.

    Ядра клеток могут содержать одно и более ядрышек . Ядрышки состоят из рибонуклеопротеидов, из которых в дальнейшем образуются субъединицы рибосом. Здесь происходит синтез рРНК (рибосомальной РНК).

    ЯДРЫШКО (nucleolus) - составная часть ядра клетки, представляющая собой оптически плотное, сильно преломляющее свет тельце. В современной цитологии (см.) ядрышко признается местом синтеза и накопления всех рибосомных РНК (рРНК), кроме 5S-PHK (см. Рибосомы).

    Ядрышко впервые описано в 1838- 1839 годы М. Шлейденом в растительных и Т. Шванном - в животных клетках.

    Число ядрышек, их размеры и форма варьируют в зависимости от вида клеток. Наиболее часто встречаются ядрышки сферической формы. Ядрышка способны сливаться друг с другом, поэтому в ядре могут присутствовать либо несколько мелких ядрышек, либо одно крупное, либо несколько ядрышек разной величины. В клетках с низким уровнем синтеза белка ядрышки невелики или не выявляются. Активизация синтеза белков сопряжена с увеличением общего объема ядрышек. Во многих случаях общий объем ядрышек также коррелирует с числом хромосомных наборов клетки (см. Хромосомный набор).

    Ядрышко не имеет оболочки и окружено слоем конденсированного хроматина (см.) - так называемого околоядрышкового, или перинуклеолярного, гетерохроматина. С помощью цитохимических методов в ядрышках выявляют РНК и белки, кислые и основные. Белки ядрышка включают ферменты, участвующие в синтезе рибосомных РНК. При окраске препаратов ядрышка, как правило, прокрашиваются основным красителем. В яйцеклетках некоторых червей, моллюсков и членистоногих встречаются сложные ядрышки (амфинуклеолы), состоящие из двух частей, одна из которых окрашивается основным красителем, другая (белковое тельце) - кислым. При прекращении синтеза рРНК в начале митоза (см.) ядрышка исчезают (исключение составляют ядрышко некоторых простейших), а при восстановлении синтеза рРНК в телофазе митоза формируются вновь на участках хромосом (см.), называемых организаторами ядрышка. В клетках человека организаторы ядрышка локализованы в области вторичных перетяжек коротких плеч хромосом 13, 14, 15, 21 и 22. При активном синтезе белка клеткой организаторы ядрышка обычно редуплицируются, и количество их достигает нескольких сотен копий. В ооцитах животных (например, амфибий) такие копии могут отрываться от хромосом и формировать множественные краевые ядрышки яйцеклеток.

    Организаторы ядрышка состоят из повторяющихся блоков транскрибируемых последовательностей ДНК, включающих гены 5,8S-PHK, 28S-РНК и 18S-pPHK, разделенные двумя некодирующими рРНК участками. Транскрибируемые последовательности ДНК чередуются с нет-ранскрибируемыми последовательностями (спейсерами). Синтез рРНК, или транскрипция (см.), осуществляется специальным ферментом - РНК-полимеразой I. Первоначально синтезируются гигантские молекулы 45S-PHK; в ходе созревания (процессинга) из этих молекул с помощью специальных ферментов образуются все три вида рРНК; этот процесс протекает в несколько этапов. Избыточные, не входящие в состав рРНК участки 45S-PHK распадаются в ядре, а зрелые рРНК транспортируются в цитоплазму, где молекулы 5,8S-рРНК и 28S-pPHK вместе с синтезированной в ядре вне ядрышка молекулой 5S-pPHK и дополнительными белками формируют большую единицу рибосомы, а молекула 18S-pPHK входит в состав ее малой субъединицы. Согласно современным представлениям рР НК и их предшественники на всех этапах процессинга присутствуют в ядре в виде комплексов с белками - рибонуклеопро-теидов. Присоединение белков к молекуле 45 S-РНК происходит по мере ее синтеза, так что к моменту завершения синтеза молекула уже представляет собой рибонуклео-протеид.

    Рис. Электронограмма ядрышка клетки НЕр-2: 1- гранулярный компонент; 2- фибриллярный компонент (нуклеолонема); з- фибриллярный центр; 4- аморфный матрикс; X 70 ООО.

    Ультраструктура ядрышка отражает последовательные этапы синтеза рРНК на матрицах организаторов ядрышка. На электронограммах в ядрышках различают фибриллярный компонент (нуклеолонему), гранулярный компонент и аморфный матрикс (рис.). Нуклеолонема представляет собой нитчатую структуру толщиной 150- 200 нм; она состоит из гранул диаметром около 15 нм и рыхло расположенных фибрилл толщиной 4-8 нм. На срезах нуклеолонемы видны относительно светлые участки - так назывыаемые фибриллярные центры. Предполагают, что эти центры образованы нетранскрибируемыми областями ДНК организаторов ядрышка, находящимися в комплексе с аргенто-фильными белками. Фибриллярные центры окружены петлями транскрибируемых цепей ДНК с синтезирующимися на них рибонуклеопротеидами 45S-PHK. Видимо, последние и выявляются на электронограммах в виде фибрилл.

    Гранулярный компонент ядрышка содержит гранулы рибонуклеопротеидов, представляющие собой различные продукты процессинга рРНК. Среди них иногда удается различить темные гранулы рибонуклеопро-теидного предшественника 28S-pPHK (32S-pPHK) и более светлые зерна, содержащие зрелую 28S-pPHK. Аморфный матрикс ядрышка практически не отличается от ядерного сока (см. Ядро клетки).

    Таким образом, ядрышко представляет собой динамичную, постоянно обновляющуюся структуру. Это зона ядра клетки, где синтезируются и созревают рРНК и откуда они транспортируются в цитоплазму.

    Пути выхода рибонуклеопротеидов из ядрышка в цитоплазму изучены недостаточно. Считают, что они проходят через поросомы ядерной оболочки (см. Ядро клетки) или через участки ее локального разрушения. Связи ядрышка с оболочкой ядра в клетках разных типов осуществляются как в виде непосредственных контактов, так и с помощью каналов, образующихся вследствие инвагинации оболочки ядра. Через подобные связи происходит также обмен веществ между ядрышками и цитоплазмой.

    При патологических процессах отмечают разнообразные изменения ядрышек. Так, при малигнизации клеток наблюдается увеличение числа и размеров ядрышек, при выраженных дистрофических процессах в клетке - так называемая сегрегация ядрышек. При сегрегации происходит перераспределение гранулярного и фибриллярного компонентов. При выраженной сегрегации ядрышек нуклеолонема может исчезать, а в гранулярном компоненте образуются темная и светлая зоны - так называемые шапочки, или кэпы. Эти структурные изменения отражают нарушения синтеза, процесса созревания и внутриядрышкового транспорта рРНК.

    См. также Рибонуклеиновые кислоты.

    Библиогр.: Заварзин А. А. и Харазова А. Д. Основы общей цитологии, с. 183, Д., 1982; Ченцов Ю. С. Общая цитология, М., 1984; Ченцов Ю. С. и Поляков В. Ю, Ультраструктура клеточного ядра, с. 50, М., 1974; В о u t e i 1 1 e М. a. D и-puy-Go in А. М. 3-dimensional analysis of the interphase nucleus, Biol. Cell, v. 45, p. 455, 1982; Busch H. a.

    Ядрышко в клетке

    Smetana K. The nucleolus, N. Y.- L., 1970; Hadjiolov A. A. The nucleolus and ribosome biogenesis, Wien - N. Y., 1985, bibliogr.

    Я. E. Хесин.

    Ядрышко клетки

    Ядро обеспечивает важнейшие метаболические и генетические функции клетки. Большинство клеток содержит одно ядро, изредка встречаются многоядерные клетки (некоторые грибы, простейшие, водоросли, поперечно-полосатые мышечные волокна и др.). Лишенная ядра клетка быстро погибает. Однако некоторые клетки в зрелом (дифференцированном) состоянии утрачивают ядро. Такие клетки либо живут недолго и заменяются новыми (например, эритроциты), либо поддерживают свою жизнедеятельность за счет притока метаболитов из тесно примыкающих к ним клеток – "кормилец" (например, клетки флоэмы у растений). По форме ядро может быть шаровидным, овальным, лопастным, линзовидным и т.д. Размер, форма и структура ядер изменяются в зависимости от функционального состояния клеток, быстро реагируя на изменение внешних условий. Ядро обычно перемещается по клетке пассивно с током окружающей его цитоплазмы, но иногда оно способно самостоятельно передвигаться, совершая движения амебоидного типа.

    Ядро – самая крупная органелла клетки, ее важнейший регулирующий центр. Как правило, клетка имеет одно ядро, но существуют клетки двухядерные и многоядерные. В некоторых организмах могут встречаться клетки, лишенные ядер. К таким безъядерным клеткам относятся, например, эритроциты млекопитающих, тромбоциты, клетки ситовидных трубок растений и некоторые другие типы клеток. Обычно безъядерными бывают высокоспециализированные клетки, утратившие ядра на ранних стадиях развития.

    Ядро содержит ядрышко, а иногда и несколько ядрышек. Ядрышко – компактная структура в ядре интерфазных клеток.

    Ядрышко – структура, составленная из расположенных рядом участков нескольких различных хромосом.

    13. Строение ядра. Ядрышко строение и функции.

    Эти участки представляют собой большие петли ДНК, содержащие гены рибосомальной РНК (рРНК). Такие петли называются ядрышковым организатором.
    Ядрышко является центром образования рибосом, т.к. здесь осуществляется синтез рРНК и соединение этих молекул с белками, т.е. происходит формирование субъединиц рибосом, которые затем поступают в цитоплазму, где и завершается сборка рибосом.

    первые ядрышки были обнаружены Фонтана в 1774 г. В живых клетках они выделяются на фоне диффузной организации хроматина из-за своей светопреломляемости. Последнее свойство связано с тем, что ядрышки являются наиболее плотными структурами в клетке. Они обнаруживаются практически во всех ядрах эукариотических клеток за редким исключением. Это говорит об обязательном присутствии этого компонента в клеточном ядре.

    В клеточном цикле ядрышко присутствует в течение всей интерфазы, в профазе по мере компактизации хромосом во время митоза оно постепенно исчезает и отсутствует в мета- и анафазе, вновь появляется в середине телофазы, чтобы сохраняться вплоть до следующего митоза, или до гибели клетки.

    Долгое время функциональное значение ядрышка было непонятно. Вплоть до 1950-х годов исследователи считали, что вещество ядрышка представляет собой своего рода запас, который используется и исчезает в момент деления ядра.

    Еще в 1930-х годах рядом исследователей (МакКлинток, Хейтц, С.Г. Навашин) было показано, что возникновение ядрышек связано топографически с определенными зонами на особых, ядрышкообразующих хромосомах. Эти зоны были названы ядрышковыми организаторами, а сами ядрышки представлялись как структурное выражение хромосомной активности. Позднее, в 1940-х годах, когда было найдено, что ядрышки содержат РНК, стала понятна их «базофилия», сродство к основным (щелочным) красителям вследствие кислой природы РНК. По данным цитохимических и биохимических исследований, основным компонентом ядрышка является белок: на его долю приходится до 70-80% от сухой массы. Такое большое содержание белка и определяет высокую плотность ядрышек. Кроме белка в составе ядрышка обнаружены нуклеиновые кислоты: РНК (5-14%) и ДНК (2-12%).

    Уже в 1950-х годах при изучении ультраструктуры ядрышек в их составе были выявлены гранулы, сходные по своим свойствам с цитоплазматическими гранулами рибонуклеопротеидной природы - с рибосомами. Следующим этапом в изучении ядрышка было открытие принципиального факта - «ядрышковый организатор» является вместилищем генов рибосомных РНК.

    В ядрышке различают:

    фибриллярный центр – слабоокрашенный компонент (ДНК, кодирующая РНК),

    фибриллярный компонент, где протекают ранние стадии образования предшественников рРНК; состоит из тонких (5 нм) рибонуклеопотеиновых фибрилл и транскрипционно активных участков ДНК;

    гранулярный компонент – содержит зрелые предшественники рибосомных СЕ, имеющих диаметр 15 нм.

    Основные функции ядрышка – синтез рРНК (транскрипция и процессинг рРНК) и образование СЕ рибосом.

    Транскрипция рРНК происходит в хромосомах 13, 14, 15, 21 и 22. Петли ДНК этих хромосом, содержащие соответствующие гены, формируют ядрышковый организатор, получивший название в связи с тем, что восстановление ядрышка в фазу G1 клеточного цикла начинается с этой структуры.