Графики функций что такое k и b. Функция у = kx2, ее свойства и график — Гипермаркет знаний

Научитесь брать производные от функций. Производная характеризует скорость изменения функции в определенной точке, лежащей на графике этой функции. В данном случае графиком может быть как прямая, так и кривая линия. То есть производная характеризует скорость изменения функции в конкретный момент времени. Вспомните общие правила, по которым берутся производные, и только потом переходите к следующему шагу.

  • Прочитайте статью .
  • Как брать простейшие производные, например, производную показательного уравнения, описано . Вычисления, представленные в следующих шагах, будут основаны на описанных в ней методах.

Научитесь различать задачи, в которых угловой коэффициент требуется вычислить через производную функции. В задачах не всегда предлагается найти угловой коэффициент или производную функции. Например, вас могут попросить найти скорость изменения функции в точке А(х,у). Также вас могут попросить найти угловой коэффициент касательной в точке А(х,у). В обоих случаях необходимо брать производную функции.

Возьмите производную данной вам функции. Здесь строить график не нужно – вам понадобится только уравнение функции. В нашем примере возьмите производную функции f (x) = 2 x 2 + 6 x {\displaystyle f(x)=2x^{2}+6x} . Берите производную согласно методам, изложенным в упомянутой выше статье:

В найденную производную подставьте координаты данной вам точки, чтобы вычислить угловой коэффициент. Производная функции равна угловому коэффициенту в определенной точке. Другими словами, f"(х) – это угловой коэффициент функции в любой точке (x,f(x)). В нашем примере:

  • Если возможно, проверьте полученный ответ на графике. Помните, что угловой коэффициент можно вычислить не в каждой точке. Дифференциальное исчисление рассматривает сложные функции и сложные графики, где угловой коэффициент можно вычислить не в каждой точке, а в некоторых случаях точки вообще не лежат на графиках. Если возможно, используйте графический калькулятор, чтобы проверить правильность вычисления углового коэффициента данной вам функции. В противном случае проведите касательную к графику в данной вам точке и подумайте, соответствует ли найденное вами значение углового коэффициента тому, что вы видите на графике.

    • Касательная будет иметь тот же угловой коэффициент, что и график функции в определенной точке. Для того, чтобы провести касательную в данной точке, двигайтесь вправо/влево по оси Х (в нашем примере на 22 значения вправо), а затем вверх на единицу по оси Y. Отметьте точку, а затем соедините ее с данной вам точкой. В нашем примере соедините точки с координатами (4,2) и (26,3).
  • Тема урока : Функция y x 2 , ее свойства и график .

    Цель урока : обобщить и систематизировать знаний о квадратичной функции, ее свойствах и графике

    Образовательные задачи:

      закрепить основные свойства квадратичной функции y =kx 2 и ее график с применением компьютерного моделирования, интерактивной доски.

      решение математических задач несколькими методами и способами, выявляя достоинства и недостатки каждого из них.

    Развивающие задачи

      развитие коммуникативных способностей учащихся,

      развитие интеллектуально-исследовательской культуры учащихся,

      развитие навыков компьютерного моделирования и работы на интерактивной доске

    Воспитательные задачи:

      воспитывать уважение к мнению других людей

      серьёзное и ответственное отношение к учебному труду.

    Вид урока: урок презентация, практикум.

    Методы обучения: беседа, объяснение, деловая игра, демонстрация, компьютерное моделирование, практическая работа.

    Формы организации работы с учащимися: индивидуальная, фронтальная, парная (групповая).

    Оборудование: компьютер, мультимедийный проектор, интерактивная доска, обычная доска, миллиметровая бумага, раздаточный материал: разноуровневые задания, памятка с требованиями к выполнению практической работы.

    Программное обеспечение: презентация, подготовленная в Microsoft PowerPoint ; Advanced Grapher 1.62 (Многофункциональная программа исследования математических функций с удобным графическим интерфейсом. Позволяет строить графики функций и их производных, находить экстремумы функций и корни уравнений, осуществлять интегрирование, получать таблицу значений функции по ее формуле и др., статус: freeware, авторские права: SerpikSoft, сайт: ); программное обеспечение интерактивной доски.

    План урока.

    1. Организационный момент – 1-2 мин.

    2. Постановка целей и задач урока – 2 мин.

    3. Оборудование – 1мин.

    4. Повторение ранее изученного материала – 10 мин.

      задания № 1

      задания № 2

    5. Практическая работа – 25 мин.

      Задание № 3

      Защита выполненного задания № 3

      Задание № 4

      Защита выполненного задания № 4

    6. Домашнее задание – 2 мин.

    7. Подведение итогов урока. Выставление оценок – 3 мин.

    Ход урока

    Демонстрируется слайд 1.

    Этап I . Организационный момент.

    Учитель приветствует ребят, отмечает отсутствующих, проверяет наличие чертежных инструментов, раздаточного материала: карточек-заданий, миллиметровой бумаги, памяток.

    Постановка цели и задач урока

    Демонстрируется слайд 2-5

    Учитель. Сегодня мы подведем итог и проверим полученные знания и умения на практике, расширим и систематизируем знания о квадратичной функции y = kx 2 , как одной из математической модели. Продолжим освоение возможностей интерактивной доски, используя в работе компьютер, рассмотрим построении графиков квадратичной функций с его применением.

    В реальной жизни встречаются процессы, описываемые различными математическими моделями вида y = f ( x ), г де f ( x ) - функция. В 7 классе мы познакомились с линейной функцией, в 8 классе начали знакомство с другой математической моделью, изучив f ( x ) квадратичную функцию. Как вы научились отличать одну модель от другой, проверим в первом задании.

    Этап II . Повторение.

    Задание 1. Подпиши график функции.

    Для каждого графика, изображенного на интерактивной доске, найти соответствующую ей функцию.

    Демонстрируется слайд 6

    На интерактивной доске учащиеся по цепочке, используя метод перемещения объектов (названия функций) из галереи рисунков, передвигают функции к соответствующему ей графику, при этом обосновывая свой выбор.

    Остальные учащиеся в тетради и двое на обычной доске одновременно записывают функции в два столбика таблицы, указывая соответствующее значение k и b . Подводится итог работы. Ученики осуществляют взаимопроверку (на интерактивной и обычной доске, в тетрадях).

    Классификация по виду математической модели

    y = kx + b

    y = kx 2

    y = 3x + 2 ; k = 3 b = 2

    y =3x 2 ; k = 3

    y =2x ; k =2 b =0

    y = - 3x 2 ; k =-3

    y =2x ; k =2 b =0

    y = x 2 ; k =1

    прямая

    парабола

    Задание 2. Перечислить свойства квадратичной функции.

    Демонстрируется слайд 7

    Учитель. В математике важно отличать одну модель от другой, зная свойства каждой, уметь использовать различные языки (словесный, символический, графический) при описании этих свойств. При подготовке к уроку группа ребят систематизировала общие сведения о квадратичной функции в таблицу, используя символический язык. На интерактивной доске таблица свойств функций закрыта шторкой. Давайте вспомним, что нам известно о свойствах квадратичной функции.

    После фронтально опроса по перечислению свойств квадратичной функции, используя прием шторки слева на направо, открывается первый столбик таблицы. Ребята сверяют по таблице, все ли свойства были названы. Затем перечисляются свойства функции в зависимости от коэффициента, в ходе беседы одновременно открываются строки таблицы – прием сдвига шторки вниз.

    Заслушиваются ответы учащихся, подводится итог повторения свойств квадратичной функции. Учащиеся осуществляют самоконтроль.

    Этап III . Применение знаний и умений

    Практическая работа

    Демонстрируется слайд 8

    Задание № 3. «Построить и описать свойства кусочно-заданной функции

    Учитель. Итак, теперь мы попробуем реализовать все знания на практике разными способами.

    Сейчас вы разделитесь на три группы:

    Группа № 1 «программисты » – строят график функции с помощью компьютера.

    Группа № 2 «практики» – строят график функции без использования компьютера на миллиметровой бумаге.

    Группа № 3 «теоретики» – описывают свойства данной функции.

    Для ребят группы № 1 (посещающие факультатив по ИВТ), на интерактивной доске высвечивается алгоритм работы для компьютерного моделирования (Демонстрируется слайд 9), группа № 2 пользуется памяткой слайд 23, приложение № 2), группа № 3 имеет на столе уже готовый график данной функции, выполненный заранее учащимися на факультативе по ИВТ (слайд 14 ).

    Задание для ребят группы № 2, со способностями ниже средних, разбито на подзадачи. Слабые учащиеся строят график только одной квадратичной функции, посильнее – квадратичную и линейную, продвинутые – выполняют все задание в комплексе.

    Учитель проверяет задание у учащихся, выполнивших задание первыми в каждой группе. Далее по мере завершения практической работы учащиеся по цепочке проверяют задания друг у друга. Таким образом, у всех учащихся работы будут проверены. Те учащиеся, которые испытывают затруднения, обращаются за помощью к учителю либо к товарищам соседней пары.

    Демонстрируется слайд 10-15

    Защита выполненной работы

    Каждая группа определяет лидера, ответственного для защиты работы. Учащиеся анализируют этапы построения и описания свойств функции. Учащиеся группы № 2 осуществляют самоконтроль, сопоставляя свой график с графиком на интерактивной доске, построенный с помощью компьютерного моделирования учащимися группы № 1. Учащиеся группы № 3 по цепочке комментируют свойства функции, график которой представлен на доске.

    Во время защиты учитель задает вопросы, которые помогают выявить достоинства и недостатки каждого способа построения графика функции:

      В чем преимущество данного способа построения графика функции?

      Какие недостатки этого способа вы можете назвать?

    Защита работы, выполненной с помощью компьютера

    Демонстрируется слайд 16

    Достоинства способа:

      Наглядность, быстрота работы, точность построения, простота реализации, возможность автоматизации проверки результата; создается график не только на бумаге, но и в электронном виде.

    Недостатки способа:

      Не совершенствуются вычислительные навыки, отсутствует связь с теорией, наличие технических средств и программного обеспечения.

    Демонстрируется слайд 17

    Защита работы, выполненной без помощи компьютера

    Достоинства способа:

      Независимость от вычислительной техники при использовании; развитие вычислительных навыков, связь с теорией.

    Недостатки способа:

      Длительность работы по времени, нет точности в построении, невозможность автоматизации проверки результата; создается график только на бумаге.

    Задание № 4 «Решить уравнение x 2 = 4 x - 4»

    Демонстрируется слайд 18

    Учитель. Предлагается вашему вниманию решить уравнение двумя методами: графический и аналитический

    1. Графический метод – двумя способами (компьютерное моделирование и без помощи компьютера).

    2. Метод – аналитический.

    Анализируя этапы графического решения уравнения, учащиеся формулируют алгоритм выполнения задания. Демонстрируется слайд 19

    При аналитическом методе решения необходимо вспомнить формулу квадрата разности двух выражений.

    Графический метод решения можно представить двумя способами с помощью компьютерного моделирования и традиционно.

    Задание выполняется учащимися групп № 1-3 по той же схеме, как и при выполнении практической работы задания № 3. Учащиеся выполняют задание и сверяют результат.

    Защита выполненной работы.

    Группа ребят, работающая у компьютера, демонстрируют результат работы с помощью мультимедийного проектора на интерактивной доске, указывая точку пересечения графиков функции и подписывая ее координаты. Группа учащихся № 3 – «теоретики», решение выносят на обычную доску. Группа учащихся № 3 – «практики», сверяют результат с интерактивной доской.

    Демонстрируется слайд 20

    Учитель дает задание сопоставить результаты. Определить на свой взгляд более эффективный метод.

    Этап IV . Домашнее задание.

    Демонстрируется слайд 21

    Учитель. В классе вы работали в группах, в парах, выполняя вместе одно задание. Дома вам предстоит выполнить практическую работу с учетом ваших способностей. Задание дифференцировано по уровням сложности (слайд 22 -приложение 2, слайд 23 ). На доске демонстрируется слайд с предписанием выполнения работы.

    Этап V . Подведение итогов урока. Выставление оценок.

    Демонстрируется слайд 24

    Сегодня мы обобщили и систематизировали знания по теме «Функция y =x 2 , ее свойства и график» с применением компьютерного моделирования, интерактивной доски, рассмотрели решение математической задачи несколькими способами, выяснили достоинства и недостатки каждого способа. Для вас более универсальным оказался способ – применение математического моделирования. Однако выбор конкретного способа зависит еще и от тех целей, которые мы ставим, решая ту или иную задачу. Разные математические задачи дают нам возможность применять различные приемы, методы и способы для конкретных практических задач. И вы вправе выбирать те из них, которые будут более подходящими в заданных условиях. На следующем уроке переходим к знакомству с новой математической моделью, пополняя запас изучаемых функций. Все знания и умения, полученные при построении графиков функций двумя способами, помогут вам в дальнейшей работе. Спасибо всем за работу.

    Литература

      Журнал «Математика в школе», № 10, 2008 г

      Журнал «Информатика и образование», № 10, 2008 г.

      А.Г.Мордкович. Алгебра 8 класс. Часть 1. Учебник. М.: Мнемозина, 2005 г.

      А.Г.Мордкович. Алгебра 8 класс. Часть 2. Задачник. М.: Мнемозина, 2005 г.

      Л.А.Александрова. Алгебра 8 класс. Самостоятельные работы / под ред. А.Г.Мордкович. М.: Мнемозина, 2006 г.

      А.Г.Мордкович. Алгебра 7-9. Методическое пособие для учителя. М.: Мнемозина, 2000 г.

    Приложение 1

    Памятка

    1. Как построить график функции.

      Составить таблицу значений.

      Построить точки на координатной плоскости.

      Соединить точки плавной линией.

      Подписать график функции.

    2. Как найти значение функции f (x ) по графику.

      На оси абсцисс найти соответствующее значение переменной.

      Провести перпендикуляр на график функции, зафиксировать на нем точку.

      Из данной точки провести перпендикуляр на ось ординат.

      Точка пересечения с осью у – и есть значение функции f ( x ).

    3. Как проверить принадлежность точки графику функции.

      Найти значение функции от абсциссы точки.

      Сопоставить результат с ординатой точки.

      Если значения совпадают – точка принадлежит графику функции.

    Приложение 2

    Практическая работа

    Вариант А

    1. Построить график функции у = 2 х 2

    а) значение у при х = -1; 2; 1/2

    б) значение х , если у = -8

    в) y наиб. и y наим. на отрезке [-1; 2]

    3. Принадлежит ли графику функции точка А (-5; 50)?

    Вариант В

    1. Построить график функции у = - 0,5 х 2

    2. Для данной функции найдите:

    а) значение у при х = -2; 0; 3

    б) значение х если у = - 8

    в) y наиб. и y наим. на отрезке [- 4; 0]

    3. Принадлежит ли графику функции точка А (-10; - 50)

    Вариант С

    1. Построить график функции у = 3/2 х 2

    2. Для данной функции найдите:

    а) значение у при х = 2; 1; 2/ 3

    б) значение х если у = 6

    в) y наиб. и y наим. на отрезке [- 2; 1]

    3. Принадлежит ли графику функции точка А (-8;- 96)?

    Определение линейной функции

    Введем определение линейной функции

    Определение

    Функция вида $y=kx+b$, где $k$ отлично от нуля называется линейной функцией.

    График линейной функции -- прямая. Число $k$ называется угловым коэффициентом прямой.

    При $b=0$ линейная функция называется функцией прямой пропорциональности $y=kx$.

    Рассмотрим рисунок 1.

    Рис. 1. Геометрический смысл углового коэффициента прямой

    Рассмотрим треугольник АВС. Видим, что$ВС=kx_0+b$. Найдем точку пересечения прямой $y=kx+b$ с осью $Ox$:

    \ \

    Значит $AC=x_0+\frac{b}{k}$. Найдем отношение этих сторон:

    \[\frac{BC}{AC}=\frac{kx_0+b}{x_0+\frac{b}{k}}=\frac{k(kx_0+b)}{{kx}_0+b}=k\]

    С другой стороны $\frac{BC}{AC}=tg\angle A$.

    Таким образом, можно сделать следующий вывод:

    Вывод

    Геометрический смысл коэффициента $k$. Угловой коэффициент прямой $k$ равен тангенсу угла наклона этой прямой к оси $Ox$.

    Исследование линейной функции $f\left(x\right)=kx+b$ и её график

    Вначале рассмотрим функцию $f\left(x\right)=kx+b$, где $k > 0$.

    1. $f"\left(x\right)={\left(kx+b\right)}"=k>0$. Следовательно, данная функция возрастает на всей области определения. Точек экстремума нет.
    2. ${\mathop{lim}_{x\to -\infty } kx\ }=-\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=+\infty $
    3. График (рис. 2).

    Рис. 2. Графики функции $y=kx+b$, при $k > 0$.

    Теперь рассмотрим функцию $f\left(x\right)=kx$, где $k

    1. Область определения -- все числа.
    2. Область значения -- все числа.
    3. $f\left(-x\right)=-kx+b$. Функция не является ни четной, ни нечетной.
    4. При $x=0,f\left(0\right)=b$. При $y=0,0=kx+b,\ x=-\frac{b}{k}$.

    Точки пересечения с осями координат: $\left(-\frac{b}{k},0\right)$ и $\left(0,\ b\right)$

    1. $f"\left(x\right)={\left(kx\right)}"=k
    2. $f^{""}\left(x\right)=k"=0$. Следовательно, функция не имеет точек перегиба.
    3. ${\mathop{lim}_{x\to -\infty } kx\ }=+\infty $, ${\mathop{lim}_{x\to +\infty } kx\ }=-\infty $
    4. График (рис. 3).

    Линейной функцией называется функция вида y = kx + b , заданная на множестве всех действительных чисел. Здесь k – угловой коэффициент (действительное число), b свободный член (действительное число), x – независимая переменная.

    В частном случае, если k = 0 , получим постоянную функцию y = b , график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b) .

    Если b = 0 , то получим функцию y = kx , которая является прямой пропорциональностью.

    b длина отрезка , который отсекает прямая по оси Oy, считая от начала координат.

    Геометрический смысл коэффициента k угол наклона прямой к положительному направлению оси Ox, считается против часовой стрелки.

    Свойства линейной функции:

    1) Область определения линейной функции есть вся вещественная ось;

    2) Если k ≠ 0 , то область значений линейной функции есть вся вещественная ось. Если k = 0 , то область значений линейной функции состоит из числа b ;

    3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b .

    a) b ≠ 0, k = 0, следовательно, y = b – четная;

    b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

    c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

    d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

    4) Свойством периодичности линейная функция не обладает;

    5) Точки пересечения с осями координат:

    Ox: y = kx + b = 0, x = -b/k , следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

    Oy: y = 0k + b = b , следовательно (0; b) – точка пересечения с осью ординат.

    Замечание.Если b = 0 и k = 0 , то функция y = 0 обращается в ноль при любом значении переменной х . Если b ≠ 0 и k = 0 , то функция y = b не обращается в ноль ни при каких значениях переменной х .

    6) Промежутки знакопостоянства зависят от коэффициента k.

    a) k > 0; kx + b > 0, kx > -b, x > -b/k.

    y = kx + b – положительна при x из (-b/k; +∞) ,

    y = kx + b – отрицательна при x из (-∞; -b/k) .

    b) k < 0; kx + b < 0, kx < -b, x < -b/k.

    y = kx + b – положительна при x из (-∞; -b/k) ,

    y = kx + b – отрицательна при x из (-b/k; +∞) .

    c) k = 0, b > 0; y = kx + b положительна на всей области определения,

    k = 0, b < 0; y = kx + b отрицательна на всей области определения.

    7) Промежутки монотонности линейной функции зависят от коэффициента k .

    k > 0 , следовательно y = kx + b возрастает на всей области определения,

    k < 0 , следовательно y = kx + b убывает на всей области определения.

    8) Графиком линейной функции является прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b . Ниже приведена таблица, которая наглядно это иллюстрирует.

    Понятие числовой функции. Способы задания функции. Свойства функций.

    Числовая функция - функция, которая действует из одного числового пространства (множества) в другое числовое пространство (множество).

    Три главных способа задания функции: аналитический, табличный и графический.

    1. Аналитический.

    Способ задания функции при помощи формулы называется аналитическим. Этот способ является основным в мат. анализе, но на практике не удобен.

    2. Табличный способ задания функции.

    Функцию можно задать с помощью таблицы, содержащей значения аргумента и соответствующие им значения функции.

    3. Графический способ задания функции.

    Функция у=f(х) называется заданной графически, если построен ее график. Такой способ задания функции дает возможность определять значения функции только приближенно, так как построение графика и нахождение на нем значений функции сопряжено с погрешностями.

    Свойства функции, которые необходимо учитывать при построении её графика:

    1)Область определения функции.

    Область определения функции, то есть те значения, которые может принимать аргумент х функции F =y (x).

    2) Промежутки возрастания и убывания функции.

    Функция называется возрастающей на рассматриваемом промежутке, если большему значению аргумента соответствует большее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 > х 2 , то у(х 1) > у(х 2).

    Функция называется убывающей на рассматриваемом промежутке, если большему значению аргумента соответствует меньшее значение функции у(х). Это означает, что если из рассматриваемого промежутка взяты два произвольных аргумента х 1 и х 2 , причём х 1 < х 2 , то у(х 1) < у(х 2).

    3) Нули функции.

    Точки, в которых функция F = y (x) пересекает ось абсцисс (они получаются, если решить уравнение у(х) = 0) и называются нулями функции.

    4)Чётность и нечётность функции.

    Функция называется чётной, если для всех значений аргумента из области определения



    у(-х) = у(х).

    График чётной функции симметричен относительно оси ординат.

    Функция называется нечётной , если для всех значений аргумента из области определения

    у(-х) = -у(х).

    График чётной функции симметричен относительно начала координат.

    Многие функции не являются ни чётными, ни нечётными.

    5)Периодичность функции.

    Функция называется периодической, если существует такое число Р, что для всех значений аргумента из области определения

    у(х + Р) = у(х).


    Линейная функция, её свойства и график.

    Линейной функцией называется функция вида y = kx + b , заданная на множестве всех действительных чисел.

    k – угловой коэффициент (действительное число)

    b – свободный член (действительное число)

    x – независимая переменная.

    · В частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси Ox, проходящая через точку с координатами (0; b).

    · Если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.

    o Геометрический смысл коэффициента b – длина отрезка, который отсекает прямая по оси Oy, считая от начала координат.

    o Геометрический смысл коэффициента k – угол наклона прямой к положительному направлению оси Ox, считается против часовой стрелки.

    Свойства линейной функции:

    1) Область определения линейной функции есть вся вещественная ось;

    2) Если k ≠ 0, то область значений линейной функции есть вся вещественная ось.

    Если k = 0, то область значений линейной функции состоит из числа b;

    3) Четность и нечетность линейной функции зависят от значений коэффициентов k и b.

    a) b ≠ 0, k = 0, следовательно, y = b – четная;

    b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

    c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

    d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

    4) Свойством периодичности линейная функция не обладает;

    5) Точки пересечения с осями координат:

    Ox: y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

    Oy: y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.

    Замечание. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. Если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.

    6) Промежутки знакопостоянства зависят от коэффициента k.

    a) k > 0; kx + b > 0, kx > -b, x > -b/k.

    y = kx + b – положительна при x из (-b/k; +∞),

    y = kx + b – отрицательна при x из (-∞; -b/k).

    b) k < 0; kx + b < 0, kx < -b, x < -b/k.

    y = kx + b – положительна при x из (-∞; -b/k),

    y = kx + b – отрицательна при x из (-b/k; +∞).

    c) k = 0, b > 0; y = kx + b положительна на всей области определения,

    k = 0, b < 0; y = kx + b отрицательна на всей области определения.

    7) Промежутки монотонности линейной функции зависят от коэффициента k.

    k > 0, следовательно y = kx + b возрастает на всей области определения,

    k < 0, следовательно y = kx + b убывает на всей области определения.

    11. Функция у = ах 2 + bх + с, её свойства и график.

    Функция у = ах 2 + bх + с (а, b, с - постоянные величины, а ≠ 0) называется квадратичной. В простейшем случае у = ах 2 (b = с = 0) график есть кривая линия, проходящая через начало координат. Кривая, служащая графиком функции у = ах 2 , есть парабола. Каждая парабола имеет ось симметрии, называемую осью параболы. Точка О пересечения параболы с ее осью называется вершиной параболы .
    График можно строить по следующей схеме: 1) Находим координаты вершины параболы х 0 = -b/2a; у 0 = у(х 0). 2) Строим еще несколько точек, которые принадлежат параболе, при построении можно использовать симметрии параболы относительно прямой х = -b/2a. 3) Соединяем обозначены точки плавной линией. Пример. Построить график функции в = х 2 + 2х - 3. Решения. Графиком функции является парабола, ветви которой направлены вверх. Абсцисса вершины параболы х 0 = 2/(2 ∙1) = -1, ее ординаты y(-1) = (1) 2 + 2(-1) - 3 = -4. Итак, вершина параболы - точка (-1; -4). Составим таблицу значений для нескольких точек, которые размещены справа от оси симметрии параболы - прямой х = -1.

    Свойства функции.